Limits...
Displacement back analysis for a high slope of the Dagangshan Hydroelectric Power Station based on BP neural network and particle swarm optimization.

Liang Z, Gong B, Tang C, Zhang Y, Ma T - ScientificWorldJournal (2014)

Bottom Line: A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model.Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters.The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.

View Article: PubMed Central - PubMed

Affiliation: Institute of Rock Instability and Seismicity Research, Dalian University of Technology, Dalian, Liaoning 116024, China.

ABSTRACT
The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.

Show MeSH

Related in: MedlinePlus

Monitoring points and excavation steps in the slope.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4129176&req=5

fig10: Monitoring points and excavation steps in the slope.

Mentions: The multipoint extensometers were installed in three major locations to monitor the slope deformation. The excavations are divided into 10 steps as shown in Figure 10.


Displacement back analysis for a high slope of the Dagangshan Hydroelectric Power Station based on BP neural network and particle swarm optimization.

Liang Z, Gong B, Tang C, Zhang Y, Ma T - ScientificWorldJournal (2014)

Monitoring points and excavation steps in the slope.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4129176&req=5

fig10: Monitoring points and excavation steps in the slope.
Mentions: The multipoint extensometers were installed in three major locations to monitor the slope deformation. The excavations are divided into 10 steps as shown in Figure 10.

Bottom Line: A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model.Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters.The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.

View Article: PubMed Central - PubMed

Affiliation: Institute of Rock Instability and Seismicity Research, Dalian University of Technology, Dalian, Liaoning 116024, China.

ABSTRACT
The right bank high slope of the Dagangshan Hydroelectric Power Station is located in complicated geological conditions with deep fractures and unloading cracks. How to obtain the mechanical parameters and then evaluate the safety of the slope are the key problems. This paper presented a displacement back analysis for the slope using an artificial neural network model (ANN) and particle swarm optimization model (PSO). A numerical model was established to simulate the displacement increment results, acquiring training data for the artificial neural network model. The backpropagation ANN model was used to establish a mapping function between the mechanical parameters and the monitoring displacements. The PSO model was applied to initialize the weights and thresholds of the backpropagation (BP) network model and determine suitable values of the mechanical parameters. Then the elastic moduli of the rock masses were obtained according to the monitoring displacement data at different excavation stages, and the BP neural network model was proved to be valid by comparing the measured displacements, the displacements predicted by the BP neural network model, and the numerical simulation using the back-analyzed parameters. The proposed model is useful for rock mechanical parameters determination and instability investigation of rock slopes.

Show MeSH
Related in: MedlinePlus