Limits...
The natural triterpene 3β,6β,16β-trihydroxy-lup-20(29)-ene obtained from the flowers of Combretum leprosum induces apoptosis in MCF-7 breast cancer cells.

Viau CM, Moura DJ, Facundo VA, Saffi J - BMC Complement Altern Med (2014)

Bottom Line: We found that the treatment with IC50 and IC80 TTHL for 24 h induced apoptosis in 14% (IC50) and 52% (IC80) of MCF-7 cells.In order to further understand the biological mechanism of TTHL-induced cytotoxicity, we have also investigated its effect on different Saccharomyces cerevisiae yeast strains.Taken together, the results suggest that TTHL forms covalent adducts with cellular macromolecules, potentially disrupting cellular function and triggering apoptosis.

View Article: PubMed Central - PubMed

Affiliation: Department of Basic Health Sciences, Laboratory of Genetic Toxicology - UFCSPA, Porto Alegre, RS, Brazil. jenifers@ufcspa.edu.br.

ABSTRACT

Background: The 3β, 6β, 16β-trihydroxylup-20(29)-ene (TTHL) is a pentacyclic triterpene obtained from the medicinal plant Combretum leprosum Mart. In folk medicine, this plant is popularly known as mofumbo, cipoaba or mufumbo, and is used to treat several diseases associated with inflammation and pain.

Methods: We investigated the antitumor efficacy of TTHL isolated from C. leprosum. The TTHL cytotoxic effect was investigated in MRC5, MCF-7, HepG2, T24, HCT116, HT29, and CACO-2 cells after 24, 48, 72 and 120 h of treatment. The mechanisms of cell death and DNA damage induction were investigated by flow cytometry and comet assay, respectively.

Results: The results indicated that TTHL induced a time- and concentration-dependent growth inhibition in all human cancer cell lines. The cytotoxicity was more pronounced in MCF-7 breast cancer cells, with an IC50 of 0.30 μg/mL at 120 h. We therefore evaluated the cell death mechanism induced by TTHL (IC20, IC50, and IC80) in MCF-7 cells at 24 h. We found that the treatment with IC50 and IC80 TTHL for 24 h induced apoptosis in 14% (IC50) and 52% (IC80) of MCF-7 cells. The apoptosis induced by TTHL was accompanied by increased levels of both cleaved caspase-9 and intracellular ROS. In order to further understand the biological mechanism of TTHL-induced cytotoxicity, we have also investigated its effect on different Saccharomyces cerevisiae yeast strains. The mutant strains sod1Δ, sod2Δ, and sod1Δsod2Δ, which are deficient in superoxide dismutase antioxidant defenses, were hypersensitive to TTHL, suggesting that its capacity to disturb cellular redox balance plays a role in drug toxicity. Moreover, TTHL induced mutagenicity in the yeast strain XV185-14c.

Conclusions: Taken together, the results suggest that TTHL forms covalent adducts with cellular macromolecules, potentially disrupting cellular function and triggering apoptosis.

Show MeSH

Related in: MedlinePlus

Flow cytometry detection of reactive oxygen species in MCF-7 cells challenged with TTHL. Cells were treated with vehicle negative control, IC20 = 0.50 μg/mL, IC50 = 1.36 μg/mL, and IC80 = 3.70 μg/mL TTHL after 24 hours’s treatment, and 500 μM H2O2. Mean data for DCF fluorescence. Results are expressed as means ± standard deviation (SD). Data were analyzed by one-way analysis of variance (ANOVA), and means were compared using Tukey test, with P ≤ 0.05 considered as statistically significant.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4129108&req=5

Fig6: Flow cytometry detection of reactive oxygen species in MCF-7 cells challenged with TTHL. Cells were treated with vehicle negative control, IC20 = 0.50 μg/mL, IC50 = 1.36 μg/mL, and IC80 = 3.70 μg/mL TTHL after 24 hours’s treatment, and 500 μM H2O2. Mean data for DCF fluorescence. Results are expressed as means ± standard deviation (SD). Data were analyzed by one-way analysis of variance (ANOVA), and means were compared using Tukey test, with P ≤ 0.05 considered as statistically significant.

Mentions: Results shown in Figure 6 and Additional file3: Figure S10 revealed that TTHL induces an increase in intracellular ROS production (24 h treatment at IC50: 49% increase; 24 h treatment at IC80: 64% increase) in MCF-7 cells, as measured by flow cytometry.Figure 6


The natural triterpene 3β,6β,16β-trihydroxy-lup-20(29)-ene obtained from the flowers of Combretum leprosum induces apoptosis in MCF-7 breast cancer cells.

Viau CM, Moura DJ, Facundo VA, Saffi J - BMC Complement Altern Med (2014)

Flow cytometry detection of reactive oxygen species in MCF-7 cells challenged with TTHL. Cells were treated with vehicle negative control, IC20 = 0.50 μg/mL, IC50 = 1.36 μg/mL, and IC80 = 3.70 μg/mL TTHL after 24 hours’s treatment, and 500 μM H2O2. Mean data for DCF fluorescence. Results are expressed as means ± standard deviation (SD). Data were analyzed by one-way analysis of variance (ANOVA), and means were compared using Tukey test, with P ≤ 0.05 considered as statistically significant.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4129108&req=5

Fig6: Flow cytometry detection of reactive oxygen species in MCF-7 cells challenged with TTHL. Cells were treated with vehicle negative control, IC20 = 0.50 μg/mL, IC50 = 1.36 μg/mL, and IC80 = 3.70 μg/mL TTHL after 24 hours’s treatment, and 500 μM H2O2. Mean data for DCF fluorescence. Results are expressed as means ± standard deviation (SD). Data were analyzed by one-way analysis of variance (ANOVA), and means were compared using Tukey test, with P ≤ 0.05 considered as statistically significant.
Mentions: Results shown in Figure 6 and Additional file3: Figure S10 revealed that TTHL induces an increase in intracellular ROS production (24 h treatment at IC50: 49% increase; 24 h treatment at IC80: 64% increase) in MCF-7 cells, as measured by flow cytometry.Figure 6

Bottom Line: We found that the treatment with IC50 and IC80 TTHL for 24 h induced apoptosis in 14% (IC50) and 52% (IC80) of MCF-7 cells.In order to further understand the biological mechanism of TTHL-induced cytotoxicity, we have also investigated its effect on different Saccharomyces cerevisiae yeast strains.Taken together, the results suggest that TTHL forms covalent adducts with cellular macromolecules, potentially disrupting cellular function and triggering apoptosis.

View Article: PubMed Central - PubMed

Affiliation: Department of Basic Health Sciences, Laboratory of Genetic Toxicology - UFCSPA, Porto Alegre, RS, Brazil. jenifers@ufcspa.edu.br.

ABSTRACT

Background: The 3β, 6β, 16β-trihydroxylup-20(29)-ene (TTHL) is a pentacyclic triterpene obtained from the medicinal plant Combretum leprosum Mart. In folk medicine, this plant is popularly known as mofumbo, cipoaba or mufumbo, and is used to treat several diseases associated with inflammation and pain.

Methods: We investigated the antitumor efficacy of TTHL isolated from C. leprosum. The TTHL cytotoxic effect was investigated in MRC5, MCF-7, HepG2, T24, HCT116, HT29, and CACO-2 cells after 24, 48, 72 and 120 h of treatment. The mechanisms of cell death and DNA damage induction were investigated by flow cytometry and comet assay, respectively.

Results: The results indicated that TTHL induced a time- and concentration-dependent growth inhibition in all human cancer cell lines. The cytotoxicity was more pronounced in MCF-7 breast cancer cells, with an IC50 of 0.30 μg/mL at 120 h. We therefore evaluated the cell death mechanism induced by TTHL (IC20, IC50, and IC80) in MCF-7 cells at 24 h. We found that the treatment with IC50 and IC80 TTHL for 24 h induced apoptosis in 14% (IC50) and 52% (IC80) of MCF-7 cells. The apoptosis induced by TTHL was accompanied by increased levels of both cleaved caspase-9 and intracellular ROS. In order to further understand the biological mechanism of TTHL-induced cytotoxicity, we have also investigated its effect on different Saccharomyces cerevisiae yeast strains. The mutant strains sod1Δ, sod2Δ, and sod1Δsod2Δ, which are deficient in superoxide dismutase antioxidant defenses, were hypersensitive to TTHL, suggesting that its capacity to disturb cellular redox balance plays a role in drug toxicity. Moreover, TTHL induced mutagenicity in the yeast strain XV185-14c.

Conclusions: Taken together, the results suggest that TTHL forms covalent adducts with cellular macromolecules, potentially disrupting cellular function and triggering apoptosis.

Show MeSH
Related in: MedlinePlus