Limits...
Microwave induced synthesis of graft copolymer of binary vinyl monomer mixtures onto delignified Grewia optiva fiber: application in dye removal.

Gupta VK, Pathania D, Priya B, Singha AS, Sharma G - Front Chem (2014)

Bottom Line: Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness.The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L × 10(-1) for EMA and 2.76 mol/L × 10(-1) for EA.The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Indian Institute of Technology Roorkee Roorkee, India.

ABSTRACT
Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness. Via this method, delignified Grewia optiva identified as a waste biomass, was graft copolymerized with methylmethacrylate (MMA) as an principal monomer in a binary mixture of ethyl methacrylate (EMA) and ethyl acrylate (EA) under microwave irradiation (MWR) using ascorbic acid/H2O2 as an initiator system. The concentration of the comonomer was optimized to maximize the graft yield with respect to the primary monomer. Maximum graft yield (86.32%) was found for dGo-poly(MMA-co-EA) binary mixture as compared to other synthesized copolymer. The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L × 10(-1) for EMA and 2.76 mol/L × 10(-1) for EA. Delignified and graft copolymerized fiber were subjected to evaluation of physicochemical properties such as swelling behavior and chemical resistance. The synthesized graft copolymers were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction techniques. Thermal stability of dGo-poly(MMA-co-EA) was found to be more as compared to the delignified Grewia optiva fiber and other graft copolymers. Although the grafting technique was found to decrease percentage crystallinity and crystallinity index among the graft copolymers but there was significant increase in their acid/base and thermal resistance properties. The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system.

No MeSH data available.


Related in: MedlinePlus

Probable mechanism of graft copolymerization of binary monomer mixture.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4127470&req=5

SC1: Probable mechanism of graft copolymerization of binary monomer mixture.


Microwave induced synthesis of graft copolymer of binary vinyl monomer mixtures onto delignified Grewia optiva fiber: application in dye removal.

Gupta VK, Pathania D, Priya B, Singha AS, Sharma G - Front Chem (2014)

Probable mechanism of graft copolymerization of binary monomer mixture.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4127470&req=5

SC1: Probable mechanism of graft copolymerization of binary monomer mixture.
Bottom Line: Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness.The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L × 10(-1) for EMA and 2.76 mol/L × 10(-1) for EA.The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry, Indian Institute of Technology Roorkee Roorkee, India.

ABSTRACT
Grafting method, through microwave radiation technique is very effective in terms of time consumption, cost effectiveness and environmental friendliness. Via this method, delignified Grewia optiva identified as a waste biomass, was graft copolymerized with methylmethacrylate (MMA) as an principal monomer in a binary mixture of ethyl methacrylate (EMA) and ethyl acrylate (EA) under microwave irradiation (MWR) using ascorbic acid/H2O2 as an initiator system. The concentration of the comonomer was optimized to maximize the graft yield with respect to the primary monomer. Maximum graft yield (86.32%) was found for dGo-poly(MMA-co-EA) binary mixture as compared to other synthesized copolymer. The experimental results inferred that the optimal concentrations for the comonomers to the optimized primary monomer was observed to be 3.19 mol/L × 10(-1) for EMA and 2.76 mol/L × 10(-1) for EA. Delignified and graft copolymerized fiber were subjected to evaluation of physicochemical properties such as swelling behavior and chemical resistance. The synthesized graft copolymers were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction techniques. Thermal stability of dGo-poly(MMA-co-EA) was found to be more as compared to the delignified Grewia optiva fiber and other graft copolymers. Although the grafting technique was found to decrease percentage crystallinity and crystallinity index among the graft copolymers but there was significant increase in their acid/base and thermal resistance properties. The grafted samples have been explored for the adsorption of hazardous methylene dye from aqueous system.

No MeSH data available.


Related in: MedlinePlus