Limits...
Comprehensive understanding of atrial septal defects by imaging studies for successful transcatheter closure.

Song J - Korean J Pediatr (2014)

Bottom Line: Both the anatomy and morphology of the defect should be precisely evaluated before the procedure.Three-dimensional (3D) echocardiography and cardiac computed tomography are helpful for understanding the morphology of a defect, which is important because different defect morphologies could variously impact the results.During the procedure, real-time 3D echocardiography can be used to guide an accurate closure.

View Article: PubMed Central - PubMed

Affiliation: Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

ABSTRACT
Transcatheter closure of atrial septal defects has become a popular procedure. The availability of a preprocedural imaging study is crucial for a safe and successful closure. Both the anatomy and morphology of the defect should be precisely evaluated before the procedure. Three-dimensional (3D) echocardiography and cardiac computed tomography are helpful for understanding the morphology of a defect, which is important because different defect morphologies could variously impact the results. During the procedure, real-time 3D echocardiography can be used to guide an accurate closure. The safety and efficiency of transcatheter closures of atrial septal defects could be improved through the use of detailed imaging studies.

No MeSH data available.


Related in: MedlinePlus

The defect area was measured by planimetry on en-face images from 3-dimentional (3D) computed tomography (A) and 3D transesophageal echocardiography (B). (A) The measured area was 9.75 cm2 and the average diameter was 35.2 mm. The longest diameter and shortest diameter of atrial septal defect were 17.1 mm and 8.5 mm, respectively. (B) The measured defect area described by the red circle was 1.41 cm2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4127391&req=5

Figure 6: The defect area was measured by planimetry on en-face images from 3-dimentional (3D) computed tomography (A) and 3D transesophageal echocardiography (B). (A) The measured area was 9.75 cm2 and the average diameter was 35.2 mm. The longest diameter and shortest diameter of atrial septal defect were 17.1 mm and 8.5 mm, respectively. (B) The measured defect area described by the red circle was 1.41 cm2.

Mentions: Balloon sizing has been accepted as an integral part of ASD device closure with an ASO, but several reports described techniques that did not use balloon sizing16,23,26,27). Oversizing has been suspected to play an important role in cardiac erosion after implantation and should be avoided during size selection. It is not surprising that a stretched balloon sizing technique results in frequent oversizing, which is why the stop-flow technique has replaced stretched balloon sizing28). Several reports have indicated that sizing with 3D TEE has similar results to those of the balloon sizing technique29,30). The longest diameter at the end-systole phase has been used to size the device, but defect morphology is often ignored when selecting device size. We identified a few reports that considered defect shape for deciding device size. Seo et al.31) found that devices implanted using the balloon sizing technique in large oval shaped defects were smaller than those used in large circular defects, and suggested that device size could be selected using 3D TEE linear parameters. By contrast, Song et al.23) measured defect area by planimetry on an en-face 3D TEE image and found that the defect area correlated nicely with the device size selected by the stop-flow technique (Fig. 6). Taken together, these data indicate that oversizing can be avoided by considering defect morphology in 3D images of the ASD.


Comprehensive understanding of atrial septal defects by imaging studies for successful transcatheter closure.

Song J - Korean J Pediatr (2014)

The defect area was measured by planimetry on en-face images from 3-dimentional (3D) computed tomography (A) and 3D transesophageal echocardiography (B). (A) The measured area was 9.75 cm2 and the average diameter was 35.2 mm. The longest diameter and shortest diameter of atrial septal defect were 17.1 mm and 8.5 mm, respectively. (B) The measured defect area described by the red circle was 1.41 cm2.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4127391&req=5

Figure 6: The defect area was measured by planimetry on en-face images from 3-dimentional (3D) computed tomography (A) and 3D transesophageal echocardiography (B). (A) The measured area was 9.75 cm2 and the average diameter was 35.2 mm. The longest diameter and shortest diameter of atrial septal defect were 17.1 mm and 8.5 mm, respectively. (B) The measured defect area described by the red circle was 1.41 cm2.
Mentions: Balloon sizing has been accepted as an integral part of ASD device closure with an ASO, but several reports described techniques that did not use balloon sizing16,23,26,27). Oversizing has been suspected to play an important role in cardiac erosion after implantation and should be avoided during size selection. It is not surprising that a stretched balloon sizing technique results in frequent oversizing, which is why the stop-flow technique has replaced stretched balloon sizing28). Several reports have indicated that sizing with 3D TEE has similar results to those of the balloon sizing technique29,30). The longest diameter at the end-systole phase has been used to size the device, but defect morphology is often ignored when selecting device size. We identified a few reports that considered defect shape for deciding device size. Seo et al.31) found that devices implanted using the balloon sizing technique in large oval shaped defects were smaller than those used in large circular defects, and suggested that device size could be selected using 3D TEE linear parameters. By contrast, Song et al.23) measured defect area by planimetry on an en-face 3D TEE image and found that the defect area correlated nicely with the device size selected by the stop-flow technique (Fig. 6). Taken together, these data indicate that oversizing can be avoided by considering defect morphology in 3D images of the ASD.

Bottom Line: Both the anatomy and morphology of the defect should be precisely evaluated before the procedure.Three-dimensional (3D) echocardiography and cardiac computed tomography are helpful for understanding the morphology of a defect, which is important because different defect morphologies could variously impact the results.During the procedure, real-time 3D echocardiography can be used to guide an accurate closure.

View Article: PubMed Central - PubMed

Affiliation: Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

ABSTRACT
Transcatheter closure of atrial septal defects has become a popular procedure. The availability of a preprocedural imaging study is crucial for a safe and successful closure. Both the anatomy and morphology of the defect should be precisely evaluated before the procedure. Three-dimensional (3D) echocardiography and cardiac computed tomography are helpful for understanding the morphology of a defect, which is important because different defect morphologies could variously impact the results. During the procedure, real-time 3D echocardiography can be used to guide an accurate closure. The safety and efficiency of transcatheter closures of atrial septal defects could be improved through the use of detailed imaging studies.

No MeSH data available.


Related in: MedlinePlus