Limits...
Comprehensive understanding of atrial septal defects by imaging studies for successful transcatheter closure.

Song J - Korean J Pediatr (2014)

Bottom Line: Both the anatomy and morphology of the defect should be precisely evaluated before the procedure.Three-dimensional (3D) echocardiography and cardiac computed tomography are helpful for understanding the morphology of a defect, which is important because different defect morphologies could variously impact the results.During the procedure, real-time 3D echocardiography can be used to guide an accurate closure.

View Article: PubMed Central - PubMed

Affiliation: Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

ABSTRACT
Transcatheter closure of atrial septal defects has become a popular procedure. The availability of a preprocedural imaging study is crucial for a safe and successful closure. Both the anatomy and morphology of the defect should be precisely evaluated before the procedure. Three-dimensional (3D) echocardiography and cardiac computed tomography are helpful for understanding the morphology of a defect, which is important because different defect morphologies could variously impact the results. During the procedure, real-time 3D echocardiography can be used to guide an accurate closure. The safety and efficiency of transcatheter closures of atrial septal defects could be improved through the use of detailed imaging studies.

No MeSH data available.


Related in: MedlinePlus

(A) A three-dimensional image showing four different rims surrounding the defect. (B) Arrow on the axial tomography image indicating posterior rim deficiency. (C) Arrow indicating anterior-superior rim deficiency. (D) Arrow indicating posterior-superior rim deficiency. (E) Arrow indicating posterior-inferior rim deficiency. D, atrial septal defect; AS, anterior-superior; AI, anterior-inferior; PS, posterior-superior; PI, posterior-inferior; SVC, superior vena cava; TV, tricuspid valve; LV, left ventricle; AO, aorta; PA, pulmonary artery; RA, right atrium; LA, left atrium; PV, pulmonary vein; RV, right ventricle; IVC, inferior vena cava.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4127391&req=5

Figure 3: (A) A three-dimensional image showing four different rims surrounding the defect. (B) Arrow on the axial tomography image indicating posterior rim deficiency. (C) Arrow indicating anterior-superior rim deficiency. (D) Arrow indicating posterior-superior rim deficiency. (E) Arrow indicating posterior-inferior rim deficiency. D, atrial septal defect; AS, anterior-superior; AI, anterior-inferior; PS, posterior-superior; PI, posterior-inferior; SVC, superior vena cava; TV, tricuspid valve; LV, left ventricle; AO, aorta; PA, pulmonary artery; RA, right atrium; LA, left atrium; PV, pulmonary vein; RV, right ventricle; IVC, inferior vena cava.

Mentions: By contrast, cardiac CT offers superb spatial and temporal resolution with a short scanning time. It allows for detailed imaging not only of intracardiac structures, but also of coexisting anomalies. In my experience, additive abnormal findings that include extracardiac lesions as well as cardiac lesions can be detected on CT images. My experience includes the detection of silent coronary stenosis and lung problems outside of the ASD on CT images. Some reports addressed the usefulness of cardiac CT for ASD device closure and demonstrated superior resolution and measurement of the surrounding rims using cardiac CT15,16) (Fig. 3). However, the radiation hazard posed by CT should not be ignored despite the use of a minimal exposure technique. We recommend cardiac CT for selected cases that have a complicated ASD or a large ASD with a rim deficiency.


Comprehensive understanding of atrial septal defects by imaging studies for successful transcatheter closure.

Song J - Korean J Pediatr (2014)

(A) A three-dimensional image showing four different rims surrounding the defect. (B) Arrow on the axial tomography image indicating posterior rim deficiency. (C) Arrow indicating anterior-superior rim deficiency. (D) Arrow indicating posterior-superior rim deficiency. (E) Arrow indicating posterior-inferior rim deficiency. D, atrial septal defect; AS, anterior-superior; AI, anterior-inferior; PS, posterior-superior; PI, posterior-inferior; SVC, superior vena cava; TV, tricuspid valve; LV, left ventricle; AO, aorta; PA, pulmonary artery; RA, right atrium; LA, left atrium; PV, pulmonary vein; RV, right ventricle; IVC, inferior vena cava.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4127391&req=5

Figure 3: (A) A three-dimensional image showing four different rims surrounding the defect. (B) Arrow on the axial tomography image indicating posterior rim deficiency. (C) Arrow indicating anterior-superior rim deficiency. (D) Arrow indicating posterior-superior rim deficiency. (E) Arrow indicating posterior-inferior rim deficiency. D, atrial septal defect; AS, anterior-superior; AI, anterior-inferior; PS, posterior-superior; PI, posterior-inferior; SVC, superior vena cava; TV, tricuspid valve; LV, left ventricle; AO, aorta; PA, pulmonary artery; RA, right atrium; LA, left atrium; PV, pulmonary vein; RV, right ventricle; IVC, inferior vena cava.
Mentions: By contrast, cardiac CT offers superb spatial and temporal resolution with a short scanning time. It allows for detailed imaging not only of intracardiac structures, but also of coexisting anomalies. In my experience, additive abnormal findings that include extracardiac lesions as well as cardiac lesions can be detected on CT images. My experience includes the detection of silent coronary stenosis and lung problems outside of the ASD on CT images. Some reports addressed the usefulness of cardiac CT for ASD device closure and demonstrated superior resolution and measurement of the surrounding rims using cardiac CT15,16) (Fig. 3). However, the radiation hazard posed by CT should not be ignored despite the use of a minimal exposure technique. We recommend cardiac CT for selected cases that have a complicated ASD or a large ASD with a rim deficiency.

Bottom Line: Both the anatomy and morphology of the defect should be precisely evaluated before the procedure.Three-dimensional (3D) echocardiography and cardiac computed tomography are helpful for understanding the morphology of a defect, which is important because different defect morphologies could variously impact the results.During the procedure, real-time 3D echocardiography can be used to guide an accurate closure.

View Article: PubMed Central - PubMed

Affiliation: Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

ABSTRACT
Transcatheter closure of atrial septal defects has become a popular procedure. The availability of a preprocedural imaging study is crucial for a safe and successful closure. Both the anatomy and morphology of the defect should be precisely evaluated before the procedure. Three-dimensional (3D) echocardiography and cardiac computed tomography are helpful for understanding the morphology of a defect, which is important because different defect morphologies could variously impact the results. During the procedure, real-time 3D echocardiography can be used to guide an accurate closure. The safety and efficiency of transcatheter closures of atrial septal defects could be improved through the use of detailed imaging studies.

No MeSH data available.


Related in: MedlinePlus