Limits...
Thermodynamic analysis and optimization of a high temperature triple absorption heat transformer.

Khamooshi M, Parham K, Yari M, Egelioglu F, Salati H, Babadi S - ScientificWorldJournal (2014)

Bottom Line: First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair.A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters.The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Eastern Mediterranean University, G. Magosa, North Cyprus, Mersin 10, Turkey.

ABSTRACT
First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

Show MeSH

Related in: MedlinePlus

The effect of Tabs on Δx.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127287&req=5

fig12: The effect of Tabs on Δx.

Mentions: The concentration difference (ΔX = Xs − Xw) exhibits a parabolic decrease by increasing absorber temperature as shown in Figure 12. As mentioned correspondingly in the literature [8, 10, 40], when generation, evaporation, AB/EV, and condensing temperatures are constant, the ΔX and Tabs will only vary with f, which is an important and easily controllable operation parameter. Larger f also results in higher Tabs and more mechanical power losses. This is completely in agreement with the results of Horuz and Kurt [1] which proved that if the evaporator temperature is bigger, the AHT performs better.


Thermodynamic analysis and optimization of a high temperature triple absorption heat transformer.

Khamooshi M, Parham K, Yari M, Egelioglu F, Salati H, Babadi S - ScientificWorldJournal (2014)

The effect of Tabs on Δx.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127287&req=5

fig12: The effect of Tabs on Δx.
Mentions: The concentration difference (ΔX = Xs − Xw) exhibits a parabolic decrease by increasing absorber temperature as shown in Figure 12. As mentioned correspondingly in the literature [8, 10, 40], when generation, evaporation, AB/EV, and condensing temperatures are constant, the ΔX and Tabs will only vary with f, which is an important and easily controllable operation parameter. Larger f also results in higher Tabs and more mechanical power losses. This is completely in agreement with the results of Horuz and Kurt [1] which proved that if the evaporator temperature is bigger, the AHT performs better.

Bottom Line: First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair.A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters.The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Eastern Mediterranean University, G. Magosa, North Cyprus, Mersin 10, Turkey.

ABSTRACT
First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

Show MeSH
Related in: MedlinePlus