Limits...
Thermodynamic analysis and optimization of a high temperature triple absorption heat transformer.

Khamooshi M, Parham K, Yari M, Egelioglu F, Salati H, Babadi S - ScientificWorldJournal (2014)

Bottom Line: First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair.A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters.The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Eastern Mediterranean University, G. Magosa, North Cyprus, Mersin 10, Turkey.

ABSTRACT
First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

Show MeSH

Related in: MedlinePlus

Effect of Teva on the COP of the system [27].
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127287&req=5

fig5: Effect of Teva on the COP of the system [27].

Mentions: The available result in the Donnellan et al.'s [27] work was also used to validate the simulation. The similarity between Figures 4 and 5 verifies the validity of our simulations. Likewise, the obtained COP of the system is qualitatively in agreement with the latter mentioned study.


Thermodynamic analysis and optimization of a high temperature triple absorption heat transformer.

Khamooshi M, Parham K, Yari M, Egelioglu F, Salati H, Babadi S - ScientificWorldJournal (2014)

Effect of Teva on the COP of the system [27].
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127287&req=5

fig5: Effect of Teva on the COP of the system [27].
Mentions: The available result in the Donnellan et al.'s [27] work was also used to validate the simulation. The similarity between Figures 4 and 5 verifies the validity of our simulations. Likewise, the obtained COP of the system is qualitatively in agreement with the latter mentioned study.

Bottom Line: First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair.A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters.The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Eastern Mediterranean University, G. Magosa, North Cyprus, Mersin 10, Turkey.

ABSTRACT
First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

Show MeSH
Related in: MedlinePlus