Limits...
Thermodynamic analysis and optimization of a high temperature triple absorption heat transformer.

Khamooshi M, Parham K, Yari M, Egelioglu F, Salati H, Babadi S - ScientificWorldJournal (2014)

Bottom Line: First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair.A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters.The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Eastern Mediterranean University, G. Magosa, North Cyprus, Mersin 10, Turkey.

ABSTRACT
First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

Show MeSH

Related in: MedlinePlus

Schematic diagram of a single stage absorption heat transformer.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127287&req=5

fig1: Schematic diagram of a single stage absorption heat transformer.

Mentions: Figure 1 shows the general schematic of the absorption heat transformer in single stage mode. The SAHT basically consists of an evaporator, a condenser, a generator, an absorber, and a solution heat exchanger (SHE). The generator and evaporator are supplied with waste heat at the same temperature, leading to increased heat that can be collected at the absorber [26].


Thermodynamic analysis and optimization of a high temperature triple absorption heat transformer.

Khamooshi M, Parham K, Yari M, Egelioglu F, Salati H, Babadi S - ScientificWorldJournal (2014)

Schematic diagram of a single stage absorption heat transformer.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127287&req=5

fig1: Schematic diagram of a single stage absorption heat transformer.
Mentions: Figure 1 shows the general schematic of the absorption heat transformer in single stage mode. The SAHT basically consists of an evaporator, a condenser, a generator, an absorber, and a solution heat exchanger (SHE). The generator and evaporator are supplied with waste heat at the same temperature, leading to increased heat that can be collected at the absorber [26].

Bottom Line: First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair.A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters.The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

View Article: PubMed Central - PubMed

Affiliation: Department of Mechanical Engineering, Eastern Mediterranean University, G. Magosa, North Cyprus, Mersin 10, Turkey.

ABSTRACT
First law of thermodynamics has been used to analyze and optimize inclusively the performance of a triple absorption heat transformer operating with LiBr/H2O as the working pair. A thermodynamic model was developed in EES (engineering equation solver) to estimate the performance of the system in terms of the most essential parameters. The assumed parameters are the temperature of the main components, weak and strong solutions, economizers' efficiencies, and bypass ratios. The whole cycle is optimized by EES software from the viewpoint of maximizing the COP via applying the direct search method. The optimization results showed that the COP of 0.2491 is reachable by the proposed cycle.

Show MeSH
Related in: MedlinePlus