Limits...
Back analysis of geomechanical parameters in underground engineering using artificial bee colony.

Zhu C, Zhao H, Zhao M - ScientificWorldJournal (2014)

Bottom Line: To the problem without analytical solution, optimal back analysis is time-consuming, and least square support vector machine (LSSVM) was used to build the relationship between unknown geomechanical parameters and displacement and improve the efficiency of back analysis.The proposed method was applied to a tunnel with analytical solution and a tunnel without analytical solution.The results show the proposed method is feasible.

View Article: PubMed Central - PubMed

Affiliation: School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China.

ABSTRACT
Accurate geomechanical parameters are critical in tunneling excavation, design, and supporting. In this paper, a displacements back analysis based on artificial bee colony (ABC) algorithm is proposed to identify geomechanical parameters from monitored displacements. ABC was used as global optimal algorithm to search the unknown geomechanical parameters for the problem with analytical solution. To the problem without analytical solution, optimal back analysis is time-consuming, and least square support vector machine (LSSVM) was used to build the relationship between unknown geomechanical parameters and displacement and improve the efficiency of back analysis. The proposed method was applied to a tunnel with analytical solution and a tunnel without analytical solution. The results show the proposed method is feasible.

Show MeSH
Predicted displacement using LSSVM with calculated displacement using theory and identified parameters.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127281&req=5

fig13: Predicted displacement using LSSVM with calculated displacement using theory and identified parameters.

Mentions: The performance of LSSVM is very important to back analysis. The predicted displacement using LSSVM is in well agreement with the calculated displacement using theory and identified parameters (shown in Figure 13). It shows the LSSVM model presents well the relationship between geomechanical parameters and displacement. It improves the efficiency of back analysis using LSSVM.


Back analysis of geomechanical parameters in underground engineering using artificial bee colony.

Zhu C, Zhao H, Zhao M - ScientificWorldJournal (2014)

Predicted displacement using LSSVM with calculated displacement using theory and identified parameters.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127281&req=5

fig13: Predicted displacement using LSSVM with calculated displacement using theory and identified parameters.
Mentions: The performance of LSSVM is very important to back analysis. The predicted displacement using LSSVM is in well agreement with the calculated displacement using theory and identified parameters (shown in Figure 13). It shows the LSSVM model presents well the relationship between geomechanical parameters and displacement. It improves the efficiency of back analysis using LSSVM.

Bottom Line: To the problem without analytical solution, optimal back analysis is time-consuming, and least square support vector machine (LSSVM) was used to build the relationship between unknown geomechanical parameters and displacement and improve the efficiency of back analysis.The proposed method was applied to a tunnel with analytical solution and a tunnel without analytical solution.The results show the proposed method is feasible.

View Article: PubMed Central - PubMed

Affiliation: School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454003, China.

ABSTRACT
Accurate geomechanical parameters are critical in tunneling excavation, design, and supporting. In this paper, a displacements back analysis based on artificial bee colony (ABC) algorithm is proposed to identify geomechanical parameters from monitored displacements. ABC was used as global optimal algorithm to search the unknown geomechanical parameters for the problem with analytical solution. To the problem without analytical solution, optimal back analysis is time-consuming, and least square support vector machine (LSSVM) was used to build the relationship between unknown geomechanical parameters and displacement and improve the efficiency of back analysis. The proposed method was applied to a tunnel with analytical solution and a tunnel without analytical solution. The results show the proposed method is feasible.

Show MeSH