Limits...
Drug delivery systems, CNS protection, and the blood brain barrier.

Upadhyay RK - Biomed Res Int (2014)

Bottom Line: Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics.In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained.Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

View Article: PubMed Central - PubMed

Affiliation: Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India.

ABSTRACT
Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

Show MeSH

Related in: MedlinePlus

(a) Showing structures of different types of drug delivery vehicles, (b) a drug loaded nanoparticle.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4127280&req=5

fig4: (a) Showing structures of different types of drug delivery vehicles, (b) a drug loaded nanoparticle.

Mentions: Nanoparticles are nanoscale sized polymeric particles which are made up of natural or artificial polymers. These are ranging in size between about 10 and 1000 nm (1 mm). These interact with biological barriers and easily pass through it and are used for drug targeting and biodistribution of pharmaceuticals in a controlled manner. Drugs can bound in form of a solid solution or dispersion or adsorbed to the surface or chemically attached on nanoparticles support carrier loading (Figure 4). Further, polymer used in construction of nanoparticles improves their stability in the biological environment. It also assist to mediate the biodistribution of active compounds, drug loading, drug targeting, transport, release, and interaction with biological barriers. But in normal cases use of nanopolymers is proved to be invasive and toxic as their degradation products create serious problems in the CNS. However, cytotoxicity generated by nanoparticles or their degradation products remain a major problem in drug development. However, valid improvements in biocompatibility are much needed; hence it should be the main concern of future pharmaceutical research [161].


Drug delivery systems, CNS protection, and the blood brain barrier.

Upadhyay RK - Biomed Res Int (2014)

(a) Showing structures of different types of drug delivery vehicles, (b) a drug loaded nanoparticle.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4127280&req=5

fig4: (a) Showing structures of different types of drug delivery vehicles, (b) a drug loaded nanoparticle.
Mentions: Nanoparticles are nanoscale sized polymeric particles which are made up of natural or artificial polymers. These are ranging in size between about 10 and 1000 nm (1 mm). These interact with biological barriers and easily pass through it and are used for drug targeting and biodistribution of pharmaceuticals in a controlled manner. Drugs can bound in form of a solid solution or dispersion or adsorbed to the surface or chemically attached on nanoparticles support carrier loading (Figure 4). Further, polymer used in construction of nanoparticles improves their stability in the biological environment. It also assist to mediate the biodistribution of active compounds, drug loading, drug targeting, transport, release, and interaction with biological barriers. But in normal cases use of nanopolymers is proved to be invasive and toxic as their degradation products create serious problems in the CNS. However, cytotoxicity generated by nanoparticles or their degradation products remain a major problem in drug development. However, valid improvements in biocompatibility are much needed; hence it should be the main concern of future pharmaceutical research [161].

Bottom Line: Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics.In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained.Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

View Article: PubMed Central - PubMed

Affiliation: Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India.

ABSTRACT
Present review highlights various drug delivery systems used for delivery of pharmaceutical agents mainly antibiotics, antineoplastic agents, neuropeptides, and other therapeutic substances through the endothelial capillaries (BBB) for CNS therapeutics. In addition, the use of ultrasound in delivery of therapeutic agents/biomolecules such as proline rich peptides, prodrugs, radiopharmaceuticals, proteins, immunoglobulins, and chimeric peptides to the target sites in deep tissue locations inside tumor sites of brain has been explained. In addition, therapeutic applications of various types of nanoparticles such as chitosan based nanomers, dendrimers, carbon nanotubes, niosomes, beta cyclodextrin carriers, cholesterol mediated cationic solid lipid nanoparticles, colloidal drug carriers, liposomes, and micelles have been discussed with their recent advancements. Emphasis has been given on the need of physiological and therapeutic optimization of existing drug delivery methods and their carriers to deliver therapeutic amount of drug into the brain for treatment of various neurological diseases and disorders. Further, strong recommendations are being made to develop nanosized drug carriers/vehicles and noninvasive therapeutic alternatives of conventional methods for better therapeutics of CNS related diseases. Hence, there is an urgent need to design nontoxic biocompatible drugs and develop noninvasive delivery methods to check posttreatment clinical fatalities in neuropatients which occur due to existing highly toxic invasive drugs and treatment methods.

Show MeSH
Related in: MedlinePlus