Limits...
Anatomic changes in the macroscopic morphology and microarchitecture of denervated long bone tissue after spinal cord injury in rats.

Zamarioli A, Maranho DA, Butezloff MM, Moura PA, Volpon JB, Shimano AC - Biomed Res Int (2014)

Bottom Line: Both groups were composed of four subgroups (n = 10/group): (1) Sham, (2) SCI, (3) SCI + PS, and (4) SCI + ES.Rehabilitation protocol consisted of a 20-minute session, 3x/wk for 30 days.The animals were sequentially weighed and euthanized.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil ; Laboratory of Bioengineering, School of Medicine of Ribeirão Preto, University of São Paulo, Pedreira de Freitas, Casa 1, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.

ABSTRACT
To study the effects of mechanical loading on bones after SCI, we assessed macro- and microscopic anatomy in rats submitted to passive standing (PS) and electrical stimulation (ES). The study design was based on two main groups of juvenile male Wistar rats with SCI: one was followed for 33 days with therapies starting at day 3 and the other was followed for 63 days with therapies starting at day 33. Both groups were composed of four subgroups (n = 10/group): (1) Sham, (2) SCI, (3) SCI + PS, and (4) SCI + ES. Rehabilitation protocol consisted of a 20-minute session, 3x/wk for 30 days. The animals were sequentially weighed and euthanized. The femur and tibia were assessed macroscopically and microscopically by scanning electronic microscopy (SEM). The SCI rats gained less weight than Sham-operated animals. Significant reduction of bone mass and periosteal radii was observed in the SCI rats, whereas PS and ES efficiently improved the macroscopic parameters. The SEM images showed less and thin trabecular bone in SCI rats. PS and ES efficiently ameliorated the bone microarchitecture deterioration by thickening and increasing the trabeculae. Based on the detrimental changes in bone tissue following SCI, the mechanical loading through weight bearing and muscle contraction may decrease the bone loss and restore the macro- and microanatomy.

Show MeSH

Related in: MedlinePlus

Anterior view of the right femur from 3 different groups: Sham (A); SCI (B); and SCI + PS (C). The lack of a mechanical load throughout both weight bearing and muscle contraction activities in the SCI rats (B) caused femoral morphological changes (i.e., a reduced bone perimeter and prominence of the gluteal tuberosity, arrow), whereas such changes were ameliorated by PS (C). (SCI: spinal cord injury; PS: passive standing).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4127270&req=5

fig4: Anterior view of the right femur from 3 different groups: Sham (A); SCI (B); and SCI + PS (C). The lack of a mechanical load throughout both weight bearing and muscle contraction activities in the SCI rats (B) caused femoral morphological changes (i.e., a reduced bone perimeter and prominence of the gluteal tuberosity, arrow), whereas such changes were ameliorated by PS (C). (SCI: spinal cord injury; PS: passive standing).

Mentions: Morphological changes in the macroscopic anatomy of the femur were observed following SCI. Figure 4 shows the femurs from the Sham 63 d, SCI 63 d, and SCI + PS 63 d groups. Regarding the macroscopic proportions of the normal femur (A), it was possible to estimate a reduced bone size after SCI over the gluteal tuberosity and the greater and third trochanter, whereas such deficits were not found in the same proportions after reloading through PS (C).


Anatomic changes in the macroscopic morphology and microarchitecture of denervated long bone tissue after spinal cord injury in rats.

Zamarioli A, Maranho DA, Butezloff MM, Moura PA, Volpon JB, Shimano AC - Biomed Res Int (2014)

Anterior view of the right femur from 3 different groups: Sham (A); SCI (B); and SCI + PS (C). The lack of a mechanical load throughout both weight bearing and muscle contraction activities in the SCI rats (B) caused femoral morphological changes (i.e., a reduced bone perimeter and prominence of the gluteal tuberosity, arrow), whereas such changes were ameliorated by PS (C). (SCI: spinal cord injury; PS: passive standing).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4127270&req=5

fig4: Anterior view of the right femur from 3 different groups: Sham (A); SCI (B); and SCI + PS (C). The lack of a mechanical load throughout both weight bearing and muscle contraction activities in the SCI rats (B) caused femoral morphological changes (i.e., a reduced bone perimeter and prominence of the gluteal tuberosity, arrow), whereas such changes were ameliorated by PS (C). (SCI: spinal cord injury; PS: passive standing).
Mentions: Morphological changes in the macroscopic anatomy of the femur were observed following SCI. Figure 4 shows the femurs from the Sham 63 d, SCI 63 d, and SCI + PS 63 d groups. Regarding the macroscopic proportions of the normal femur (A), it was possible to estimate a reduced bone size after SCI over the gluteal tuberosity and the greater and third trochanter, whereas such deficits were not found in the same proportions after reloading through PS (C).

Bottom Line: Both groups were composed of four subgroups (n = 10/group): (1) Sham, (2) SCI, (3) SCI + PS, and (4) SCI + ES.Rehabilitation protocol consisted of a 20-minute session, 3x/wk for 30 days.The animals were sequentially weighed and euthanized.

View Article: PubMed Central - PubMed

Affiliation: Department of Biomechanics, Medicine and Rehabilitation, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil ; Laboratory of Bioengineering, School of Medicine of Ribeirão Preto, University of São Paulo, Pedreira de Freitas, Casa 1, Avenida Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.

ABSTRACT
To study the effects of mechanical loading on bones after SCI, we assessed macro- and microscopic anatomy in rats submitted to passive standing (PS) and electrical stimulation (ES). The study design was based on two main groups of juvenile male Wistar rats with SCI: one was followed for 33 days with therapies starting at day 3 and the other was followed for 63 days with therapies starting at day 33. Both groups were composed of four subgroups (n = 10/group): (1) Sham, (2) SCI, (3) SCI + PS, and (4) SCI + ES. Rehabilitation protocol consisted of a 20-minute session, 3x/wk for 30 days. The animals were sequentially weighed and euthanized. The femur and tibia were assessed macroscopically and microscopically by scanning electronic microscopy (SEM). The SCI rats gained less weight than Sham-operated animals. Significant reduction of bone mass and periosteal radii was observed in the SCI rats, whereas PS and ES efficiently improved the macroscopic parameters. The SEM images showed less and thin trabecular bone in SCI rats. PS and ES efficiently ameliorated the bone microarchitecture deterioration by thickening and increasing the trabeculae. Based on the detrimental changes in bone tissue following SCI, the mechanical loading through weight bearing and muscle contraction may decrease the bone loss and restore the macro- and microanatomy.

Show MeSH
Related in: MedlinePlus