Limits...
Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

Kim YM, You KP, You JY - ScientificWorldJournal (2014)

Bottom Line: Artificial structures such as embankments built during the construction of highways influence the surrounding airflow.The construction of the embankment influenced surrounding temperatures.The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

View Article: PubMed Central - PubMed

Affiliation: The Department of Architectural Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.

ABSTRACT
Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

Show MeSH

Related in: MedlinePlus

Field-measured points.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127258&req=5

fig10: Field-measured points.

Mentions: To identify the correlation between the surface wind velocity and the temperature change in the area of highway embankments, a field experiment was performed. Figure 9 shows the distance between the meteorological observatory and the field experiment site (8.6 km in a straight line from the measured points). The field experiment was conducted based on an average temperature of 5.6°, maximum temperature of 21.4°, minimum temperature of −4.1°, and average wind velocity of 3.4 m/s in March (as observed in the nearest meteorological observatory). In the field experiment, wind velocity and temperature distribution were identified focusing on the lowest point (−11.5 m) and the highest point (1.2 m) of the embankment. Figure 10 shows the location of the field experiment site. To identify changes in wind velocity and temperature according to the height of the embankment, anemometers were installed at the highest and lowest points.


Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

Kim YM, You KP, You JY - ScientificWorldJournal (2014)

Field-measured points.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127258&req=5

fig10: Field-measured points.
Mentions: To identify the correlation between the surface wind velocity and the temperature change in the area of highway embankments, a field experiment was performed. Figure 9 shows the distance between the meteorological observatory and the field experiment site (8.6 km in a straight line from the measured points). The field experiment was conducted based on an average temperature of 5.6°, maximum temperature of 21.4°, minimum temperature of −4.1°, and average wind velocity of 3.4 m/s in March (as observed in the nearest meteorological observatory). In the field experiment, wind velocity and temperature distribution were identified focusing on the lowest point (−11.5 m) and the highest point (1.2 m) of the embankment. Figure 10 shows the location of the field experiment site. To identify changes in wind velocity and temperature according to the height of the embankment, anemometers were installed at the highest and lowest points.

Bottom Line: Artificial structures such as embankments built during the construction of highways influence the surrounding airflow.The construction of the embankment influenced surrounding temperatures.The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

View Article: PubMed Central - PubMed

Affiliation: The Department of Architectural Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.

ABSTRACT
Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

Show MeSH
Related in: MedlinePlus