Limits...
Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

Kim YM, You KP, You JY - ScientificWorldJournal (2014)

Bottom Line: Artificial structures such as embankments built during the construction of highways influence the surrounding airflow.The construction of the embankment influenced surrounding temperatures.The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

View Article: PubMed Central - PubMed

Affiliation: The Department of Architectural Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.

ABSTRACT
Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

Show MeSH

Related in: MedlinePlus

Wind velocities per minute by embankment's distance according to wind angle changes.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127258&req=5

fig7: Wind velocities per minute by embankment's distance according to wind angle changes.

Mentions: Figure 7 shows wind velocity changes by distance from the embankment according to wind angle changes. Before the construction of the embankment, wind velocity changes by distance were shown to be consistent without large influences from wind angles. However, after the construction of the embankment, wind velocity changes compared to the reference wind velocities according to the distance from the embankment were confirmed to be influenced by wind angles. In wind velocity changes by the measurement distance of the wind angles SSW and SW, the site that was 3H (H = the embankment's height) away from the embankment showed a decline of wind velocity ratios of up to over 60% compared to the site 1.5H away from the embankment regardless of wind velocity changes. However, in the wind angle NNW blown from the embankment's north, there were no wind velocity changes by distance. Wind velocity changes by distance from the embankment were influenced by wind angles. Figure 8 shows the wind velocity distribution of the area surrounding the embankment when the wind was blowing from SSW at 3 m/s.


Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

Kim YM, You KP, You JY - ScientificWorldJournal (2014)

Wind velocities per minute by embankment's distance according to wind angle changes.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127258&req=5

fig7: Wind velocities per minute by embankment's distance according to wind angle changes.
Mentions: Figure 7 shows wind velocity changes by distance from the embankment according to wind angle changes. Before the construction of the embankment, wind velocity changes by distance were shown to be consistent without large influences from wind angles. However, after the construction of the embankment, wind velocity changes compared to the reference wind velocities according to the distance from the embankment were confirmed to be influenced by wind angles. In wind velocity changes by the measurement distance of the wind angles SSW and SW, the site that was 3H (H = the embankment's height) away from the embankment showed a decline of wind velocity ratios of up to over 60% compared to the site 1.5H away from the embankment regardless of wind velocity changes. However, in the wind angle NNW blown from the embankment's north, there were no wind velocity changes by distance. Wind velocity changes by distance from the embankment were influenced by wind angles. Figure 8 shows the wind velocity distribution of the area surrounding the embankment when the wind was blowing from SSW at 3 m/s.

Bottom Line: Artificial structures such as embankments built during the construction of highways influence the surrounding airflow.The construction of the embankment influenced surrounding temperatures.The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

View Article: PubMed Central - PubMed

Affiliation: The Department of Architectural Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.

ABSTRACT
Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

Show MeSH
Related in: MedlinePlus