Limits...
Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

Kim YM, You KP, You JY - ScientificWorldJournal (2014)

Bottom Line: Artificial structures such as embankments built during the construction of highways influence the surrounding airflow.The construction of the embankment influenced surrounding temperatures.The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

View Article: PubMed Central - PubMed

Affiliation: The Department of Architectural Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.

ABSTRACT
Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

Show MeSH

Related in: MedlinePlus

Topographic map of area surrounding embankment.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127258&req=5

fig1: Topographic map of area surrounding embankment.

Mentions: In the test site, fruit farms were distributed around an area comprised of a 1.5 km embankment in a highway construction section. The highway embankments, located at 36° 3.4′N and 140° 7.5′ (E), and their surrounding areas are shown in Figure 1. Before the construction of the embankments, air could naturally flow down to the bottom of the mountain. However, it seems that the construction of the embankments affected the airflow. To evaluate wind velocity and temperature change in the areas surrounding the highway embankments, two types of tests were executed. First, by making a miniature land model, a wind tunnel test was performed to identify wind velocity changes in survey points before and after the construction. Second, a field experiment was performed to identify the correlation between temperature and wind velocity changes in the fruit farming area after implementation of the embankment.


Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

Kim YM, You KP, You JY - ScientificWorldJournal (2014)

Topographic map of area surrounding embankment.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127258&req=5

fig1: Topographic map of area surrounding embankment.
Mentions: In the test site, fruit farms were distributed around an area comprised of a 1.5 km embankment in a highway construction section. The highway embankments, located at 36° 3.4′N and 140° 7.5′ (E), and their surrounding areas are shown in Figure 1. Before the construction of the embankments, air could naturally flow down to the bottom of the mountain. However, it seems that the construction of the embankments affected the airflow. To evaluate wind velocity and temperature change in the areas surrounding the highway embankments, two types of tests were executed. First, by making a miniature land model, a wind tunnel test was performed to identify wind velocity changes in survey points before and after the construction. Second, a field experiment was performed to identify the correlation between temperature and wind velocity changes in the fruit farming area after implementation of the embankment.

Bottom Line: Artificial structures such as embankments built during the construction of highways influence the surrounding airflow.The construction of the embankment influenced surrounding temperatures.The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

View Article: PubMed Central - PubMed

Affiliation: The Department of Architectural Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea.

ABSTRACT
Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

Show MeSH
Related in: MedlinePlus