Limits...
Covert network analysis for key player detection and event prediction using a hybrid classifier.

Butt WH, Akram MU, Khan SA, Javed MY - ScientificWorldJournal (2014)

Bottom Line: National security has gained vital importance due to increasing number of suspicious and terrorist events across the globe.Use of different subfields of information technology has also gained much attraction of researchers and practitioners to design systems which can detect main members which are actually responsible for such kind of events.As a proof of concept, the proposed framework has been implemented and tested using different case studies including two publicly available datasets and one local network.

View Article: PubMed Central - PubMed

Affiliation: Department of Computer Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.

ABSTRACT
National security has gained vital importance due to increasing number of suspicious and terrorist events across the globe. Use of different subfields of information technology has also gained much attraction of researchers and practitioners to design systems which can detect main members which are actually responsible for such kind of events. In this paper, we present a novel method to predict key players from a covert network by applying a hybrid framework. The proposed system calculates certain centrality measures for each node in the network and then applies novel hybrid classifier for detection of key players. Our system also applies anomaly detection to predict any terrorist activity in order to help law enforcement agencies to destabilize the involved network. As a proof of concept, the proposed framework has been implemented and tested using different case studies including two publicly available datasets and one local network.

Show MeSH

Related in: MedlinePlus

Nearest neighbor based approach.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127216&req=5

fig6: Nearest neighbor based approach.

Mentions: As stated earlier, in nearest neighbor based outlier detection, the base assumption is that normal objects have many closely located neighbors, while outliers are located in a comparatively low dense region which is normally far from normal regions. As Figure 6 indicates, C1 and C2 are two data clusters in which all the data objects are closely located indicating that all are normal data instances, while points P1 and P2 are located in rare regions clearly depicting that they are outlier instances.


Covert network analysis for key player detection and event prediction using a hybrid classifier.

Butt WH, Akram MU, Khan SA, Javed MY - ScientificWorldJournal (2014)

Nearest neighbor based approach.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127216&req=5

fig6: Nearest neighbor based approach.
Mentions: As stated earlier, in nearest neighbor based outlier detection, the base assumption is that normal objects have many closely located neighbors, while outliers are located in a comparatively low dense region which is normally far from normal regions. As Figure 6 indicates, C1 and C2 are two data clusters in which all the data objects are closely located indicating that all are normal data instances, while points P1 and P2 are located in rare regions clearly depicting that they are outlier instances.

Bottom Line: National security has gained vital importance due to increasing number of suspicious and terrorist events across the globe.Use of different subfields of information technology has also gained much attraction of researchers and practitioners to design systems which can detect main members which are actually responsible for such kind of events.As a proof of concept, the proposed framework has been implemented and tested using different case studies including two publicly available datasets and one local network.

View Article: PubMed Central - PubMed

Affiliation: Department of Computer Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan.

ABSTRACT
National security has gained vital importance due to increasing number of suspicious and terrorist events across the globe. Use of different subfields of information technology has also gained much attraction of researchers and practitioners to design systems which can detect main members which are actually responsible for such kind of events. In this paper, we present a novel method to predict key players from a covert network by applying a hybrid framework. The proposed system calculates certain centrality measures for each node in the network and then applies novel hybrid classifier for detection of key players. Our system also applies anomaly detection to predict any terrorist activity in order to help law enforcement agencies to destabilize the involved network. As a proof of concept, the proposed framework has been implemented and tested using different case studies including two publicly available datasets and one local network.

Show MeSH
Related in: MedlinePlus