Limits...
Low-cost dielectric substrate for designing low profile multiband monopole microstrip antenna.

Ahsan MR, Islam MT, Habib Ullah M, Arshad H, Mansor MF - ScientificWorldJournal (2014)

Bottom Line: This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band.The proposed antenna of 20 × 20 mm(2) radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line.The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53-2.89 GHz) and 440 MHz (3.47-3.91 GHz) for WiMAX and 1550 MHz (6.28-7.83 GHz) for C-band.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.

ABSTRACT
This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm(2) radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53-2.89 GHz) and 440 MHz (3.47-3.91 GHz) for WiMAX and 1550 MHz (6.28-7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively.

Show MeSH
Geometry of the proposed multiband antenna.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127211&req=5

fig1: Geometry of the proposed multiband antenna.

Mentions: The geometrical structure and configuration with detailed design parameters of the proposed patch antenna are shown in Figure 1. The antenna is designed and fabricated on an h = 1.6 mm thick fiberglass polymer resin substrate with relative dielectric constant εr = 4.6 and loss tangent tanδ = 0.02. The industry standard, 3D full wave electromagnetic field simulation tool HFSS package which is based on the finite element method (FEM) has been used for the design and simulation of the proposed antenna. The in house LPKF PCB prototyping machine is used in the prototype fabrication process. The two-sided structure of the antenna consists of a standard 50Ω SMA connector, a microstrip line for feeding, radiating patch on top, and a reduced rectangular ground plane. The proposed antenna structure is achieved by cutting slots and etching out different shapes from a conventional rectangular patch.


Low-cost dielectric substrate for designing low profile multiband monopole microstrip antenna.

Ahsan MR, Islam MT, Habib Ullah M, Arshad H, Mansor MF - ScientificWorldJournal (2014)

Geometry of the proposed multiband antenna.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127211&req=5

fig1: Geometry of the proposed multiband antenna.
Mentions: The geometrical structure and configuration with detailed design parameters of the proposed patch antenna are shown in Figure 1. The antenna is designed and fabricated on an h = 1.6 mm thick fiberglass polymer resin substrate with relative dielectric constant εr = 4.6 and loss tangent tanδ = 0.02. The industry standard, 3D full wave electromagnetic field simulation tool HFSS package which is based on the finite element method (FEM) has been used for the design and simulation of the proposed antenna. The in house LPKF PCB prototyping machine is used in the prototype fabrication process. The two-sided structure of the antenna consists of a standard 50Ω SMA connector, a microstrip line for feeding, radiating patch on top, and a reduced rectangular ground plane. The proposed antenna structure is achieved by cutting slots and etching out different shapes from a conventional rectangular patch.

Bottom Line: This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band.The proposed antenna of 20 × 20 mm(2) radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line.The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53-2.89 GHz) and 440 MHz (3.47-3.91 GHz) for WiMAX and 1550 MHz (6.28-7.83 GHz) for C-band.

View Article: PubMed Central - PubMed

Affiliation: Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia.

ABSTRACT
This paper proposes a small sized, low-cost multiband monopole antenna which can cover the WiMAX bands and C-band. The proposed antenna of 20 × 20 mm(2) radiating patch is printed on cost effective 1.6 mm thick fiberglass polymer resin dielectric material substrate and fed by 4 mm long microstrip line. The finite element method based, full wave electromagnetic simulator HFSS is efficiently utilized for designing and analyzing the proposed antenna and the antenna parameters are measured in a standard far-field anechoic chamber. The experimental results show that the prototype of the antenna has achieved operating bandwidths (voltage stand wave ratio (VSWR) less than 2) 360 MHz (2.53-2.89 GHz) and 440 MHz (3.47-3.91 GHz) for WiMAX and 1550 MHz (6.28-7.83 GHz) for C-band. The simulated and measured results for VSWR, radiation patterns, and gain are well matched. Nearly omnidirectional radiation patterns are achieved and the peak gains are of 3.62 dBi, 3.67 dBi, and 5.7 dBi at 2.66 GHz, 3.65 GHz, and 6.58 GHz, respectively.

Show MeSH