Limits...
Induced effects of transcranial magnetic stimulation on the autonomic nervous system and the cardiac rhythm.

Cabrerizo M, Cabrera A, Perez JO, de la Rua J, Rojas N, Zhou Q, Pinzon-Ardila A, Gonzalez-Arias SM, Adjouadi M - ScientificWorldJournal (2014)

Bottom Line: The rTMS activation resulted in a reduction of the RR intervals (cardioacceleration) in most cases.Most of these cases also showed significant changes in the Poincare plot descriptor SD2 (long-term variability), the area under the low frequency (LF) power spectrum density curve, and the low frequency to high frequency (LF/HF) ratio.The RR intervals changed significantly in specific instants of time during rTMS activation showing either heart rate acceleration or heart rate deceleration.

View Article: PubMed Central - PubMed

Affiliation: Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University (FIU), USA.

ABSTRACT
Several standard protocols based on repetitive transcranial magnetic stimulation (rTMS) have been employed for treatment of a variety of neurological disorders. Despite their advantages in patients that are retractable to medication, there is a lack of knowledge about the effects of rTMS on the autonomic nervous system that controls the cardiovascular system. Current understanding suggests that the shape of the so-called QRS complex together with the size of the different segments and intervals between the PQRST deflections of the heart could predict the nature of the different arrhythmias and ailments affecting the heart. This preliminary study involving 10 normal subjects from 20 to 30 years of age demonstrated that rTMS can induce changes in the heart rhythm. The autonomic activity that controls the cardiac rhythm was indeed altered by an rTMS session targeting the motor cortex using intensity below the subject's motor threshold and lasting no more than 5 minutes. The rTMS activation resulted in a reduction of the RR intervals (cardioacceleration) in most cases. Most of these cases also showed significant changes in the Poincare plot descriptor SD2 (long-term variability), the area under the low frequency (LF) power spectrum density curve, and the low frequency to high frequency (LF/HF) ratio. The RR intervals changed significantly in specific instants of time during rTMS activation showing either heart rate acceleration or heart rate deceleration.

Show MeSH

Related in: MedlinePlus

Power spectrum. Note: sampling rate of the ECG was 1 Hz, so the frequency spectrum was plotted until 0.5 HZ (Nyquist frequency criteria). There is an increment of the power around 0.05 and 0.1 Hz during the stimulation using 10 Hz and 5 repetitions.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127210&req=5

fig8: Power spectrum. Note: sampling rate of the ECG was 1 Hz, so the frequency spectrum was plotted until 0.5 HZ (Nyquist frequency criteria). There is an increment of the power around 0.05 and 0.1 Hz during the stimulation using 10 Hz and 5 repetitions.

Mentions: As shown in Figure 8, the results of a representative subject show some differences in HRV as determined from spectral analysis in the LF and HF ranges. These results are observed for all subjects of the study. Repetitive TMS, particularly after stimulation of the left hemisphere, induced a slight decrease in the parasympathetic (HF components of the spectrum) and a stronger decrease in the LF power spectrum (partially sympathetic activity). The quantitative changes in the power spectrum of the HRV proved that the cardiovascular control mechanism was altered during rTMS [47, 48].


Induced effects of transcranial magnetic stimulation on the autonomic nervous system and the cardiac rhythm.

Cabrerizo M, Cabrera A, Perez JO, de la Rua J, Rojas N, Zhou Q, Pinzon-Ardila A, Gonzalez-Arias SM, Adjouadi M - ScientificWorldJournal (2014)

Power spectrum. Note: sampling rate of the ECG was 1 Hz, so the frequency spectrum was plotted until 0.5 HZ (Nyquist frequency criteria). There is an increment of the power around 0.05 and 0.1 Hz during the stimulation using 10 Hz and 5 repetitions.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127210&req=5

fig8: Power spectrum. Note: sampling rate of the ECG was 1 Hz, so the frequency spectrum was plotted until 0.5 HZ (Nyquist frequency criteria). There is an increment of the power around 0.05 and 0.1 Hz during the stimulation using 10 Hz and 5 repetitions.
Mentions: As shown in Figure 8, the results of a representative subject show some differences in HRV as determined from spectral analysis in the LF and HF ranges. These results are observed for all subjects of the study. Repetitive TMS, particularly after stimulation of the left hemisphere, induced a slight decrease in the parasympathetic (HF components of the spectrum) and a stronger decrease in the LF power spectrum (partially sympathetic activity). The quantitative changes in the power spectrum of the HRV proved that the cardiovascular control mechanism was altered during rTMS [47, 48].

Bottom Line: The rTMS activation resulted in a reduction of the RR intervals (cardioacceleration) in most cases.Most of these cases also showed significant changes in the Poincare plot descriptor SD2 (long-term variability), the area under the low frequency (LF) power spectrum density curve, and the low frequency to high frequency (LF/HF) ratio.The RR intervals changed significantly in specific instants of time during rTMS activation showing either heart rate acceleration or heart rate deceleration.

View Article: PubMed Central - PubMed

Affiliation: Center for Advanced Technology and Education, Department of Electrical and Computer Engineering, College of Engineering and Computing, Florida International University (FIU), USA.

ABSTRACT
Several standard protocols based on repetitive transcranial magnetic stimulation (rTMS) have been employed for treatment of a variety of neurological disorders. Despite their advantages in patients that are retractable to medication, there is a lack of knowledge about the effects of rTMS on the autonomic nervous system that controls the cardiovascular system. Current understanding suggests that the shape of the so-called QRS complex together with the size of the different segments and intervals between the PQRST deflections of the heart could predict the nature of the different arrhythmias and ailments affecting the heart. This preliminary study involving 10 normal subjects from 20 to 30 years of age demonstrated that rTMS can induce changes in the heart rhythm. The autonomic activity that controls the cardiac rhythm was indeed altered by an rTMS session targeting the motor cortex using intensity below the subject's motor threshold and lasting no more than 5 minutes. The rTMS activation resulted in a reduction of the RR intervals (cardioacceleration) in most cases. Most of these cases also showed significant changes in the Poincare plot descriptor SD2 (long-term variability), the area under the low frequency (LF) power spectrum density curve, and the low frequency to high frequency (LF/HF) ratio. The RR intervals changed significantly in specific instants of time during rTMS activation showing either heart rate acceleration or heart rate deceleration.

Show MeSH
Related in: MedlinePlus