Limits...
A secure 3-way routing protocols for intermittently connected mobile ad hoc networks.

Sekaran R, Parasuraman GK - ScientificWorldJournal (2014)

Bottom Line: These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth.Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters.This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET.

View Article: PubMed Central - PubMed

Affiliation: Anna University Regional Centre, Madurai, Tamil Nadu 625007, India.

ABSTRACT
The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET). The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET.

Show MeSH

Related in: MedlinePlus

Overhead with respect to number of nodes.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4127208&req=5

fig2: Overhead with respect to number of nodes.

Mentions: The variation on overhead ratio of LA, A-LA, and B-LA are portrayed in Figure 2. The Figure 2 clearly shows that B-LA incurs a minimum overhead that is acceptable. LA and A-LA exerts slightly higher ratio of overhead than B-LA. Even though three algorithms provide optimum that is acceptable range of overhead B-LA seems to be minimum. The main reason is that B-LA uses the objective value to estimate the efficiency of the route selected. Also since it uses the backward propagation to evaluate the route it delivers minimum overhead than the other two. Figure 2 says B-LA shows 44.62% (approx) of overhead whereas LA and A-LA show a slight higher value of 57.036% (approx) and 52.87% (approx).


A secure 3-way routing protocols for intermittently connected mobile ad hoc networks.

Sekaran R, Parasuraman GK - ScientificWorldJournal (2014)

Overhead with respect to number of nodes.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4127208&req=5

fig2: Overhead with respect to number of nodes.
Mentions: The variation on overhead ratio of LA, A-LA, and B-LA are portrayed in Figure 2. The Figure 2 clearly shows that B-LA incurs a minimum overhead that is acceptable. LA and A-LA exerts slightly higher ratio of overhead than B-LA. Even though three algorithms provide optimum that is acceptable range of overhead B-LA seems to be minimum. The main reason is that B-LA uses the objective value to estimate the efficiency of the route selected. Also since it uses the backward propagation to evaluate the route it delivers minimum overhead than the other two. Figure 2 says B-LA shows 44.62% (approx) of overhead whereas LA and A-LA show a slight higher value of 57.036% (approx) and 52.87% (approx).

Bottom Line: These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth.Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters.This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET.

View Article: PubMed Central - PubMed

Affiliation: Anna University Regional Centre, Madurai, Tamil Nadu 625007, India.

ABSTRACT
The mobile ad hoc network may be partially connected or it may be disconnected in nature and these forms of networks are termed intermittently connected mobile ad hoc network (ICMANET). The routing in such disconnected network is commonly an arduous task. Many routing protocols have been proposed for routing in ICMANET since decades. The routing techniques in existence for ICMANET are, namely, flooding, epidemic, probabilistic, copy case, spray and wait, and so forth. These techniques achieve an effective routing with minimum latency, higher delivery ratio, lesser overhead, and so forth. Though these techniques generate effective results, in this paper, we propose novel routing algorithms grounded on agent and cryptographic techniques, namely, location dissemination service (LoDiS) routing with agent AES, A-LoDiS with agent AES routing, and B-LoDiS with agent AES routing, ensuring optimal results with respect to various network routing parameters. The algorithm along with efficient routing ensures higher degree of security. The security level is cited testing with respect to possibility of malicious nodes into the network. This paper also aids, with the comparative results of proposed algorithms, for secure routing in ICMANET.

Show MeSH
Related in: MedlinePlus