Limits...
A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission.

Makanga M - Malar. J. (2014)

Bottom Line: For elimination strategies to be effective, limited disease transmission, achieved through rapid reduction in the infectious parasite reservoir and decreased gametocyte carriage, will be critical.Artemisinin-based combination therapy (ACT) forms the cornerstone of WHO-recommended treatment for uncomplicated Plasmodium falciparum malaria, and in combination with other effective interventions will undoubtedly play a vital role in elimination programmes.Many studies and analyses have specifically investigated the effects of the ACT, artemether-lumefantrine (AL) on gametocyte carriage.

View Article: PubMed Central - HTML - PubMed

Affiliation: European & Developing Countries Clinical Trials Partnership (EDCTP), PO Box 19070, Tygerberg, Cape Town, South Africa. makanga@edctp.org.

ABSTRACT
While significant advances have been made in the prevention and treatment of malaria in recent years, these successes continue to fall short of the World Health Organization (WHO) goals for malaria control and elimination. For elimination strategies to be effective, limited disease transmission, achieved through rapid reduction in the infectious parasite reservoir and decreased gametocyte carriage, will be critical. Artemisinin-based combination therapy (ACT) forms the cornerstone of WHO-recommended treatment for uncomplicated Plasmodium falciparum malaria, and in combination with other effective interventions will undoubtedly play a vital role in elimination programmes. The gametocytocidal properties of artemisinins are a bonus attribute; there is epidemiological evidence of reductions in malaria incidence and transmission in African regions since the introduction of these agents. Many studies and analyses have specifically investigated the effects of the ACT, artemether-lumefantrine (AL) on gametocyte carriage. In this systematic review of 62 articles published between 1998 and January 2014, the effects of AL on gametocyte carriage and malaria transmission are compared with other artemisinin-based anti-malarials and non-ACT. The impact of AL treatment of asymptomatic carriers on population gametocyte carriage, and the potential future role of AL in malaria elimination initiatives are also considered. Despite the inherent difficulties in comparing data from a range of different studies that also utilized different diagnostic approaches to assess baseline gametocyte counts, the gametocytocidal effect of AL was proportionately consistent across the studies reviewed, suggesting that AL will continue to play a vital role in the treatment of malaria and contribute to clearing the path towards malaria elimination. However, the specific place of AL is the subject of much ongoing research and will undoubtedly be dependent on different demographic and geographical scenarios. Utilizing ACT, such as AL, within malaria elimination strategies is also associated with a number of other challenges, such as balancing potential increased use of ACT (e g, treatment of asymptomatic carriers and home-based treatment) with rational use and avoidance of drug resistance development.

Show MeSH

Related in: MedlinePlus

Overview of number of records identified, discarded and included within the systematic review.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4126813&req=5

Figure 2: Overview of number of records identified, discarded and included within the systematic review.

Mentions: From a total of 175 records initially identified, more than half were considered not relevant (i e, did not include data on gametocyte clearance/carriage) or were duplicates, leaving 62 relevant articles for review (Figure 2). These were published between 1998 and January 2014 and included randomized, double-blind and randomized open-label trials (phases II–IV), non-interventional observational studies, single-/multi-centre reports, retrospective analyses of previously conducted efficacy studies, pooled analyses, previously published systematic reviews, reviews, and mini-reviews.


A review of the effects of artemether-lumefantrine on gametocyte carriage and disease transmission.

Makanga M - Malar. J. (2014)

Overview of number of records identified, discarded and included within the systematic review.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4126813&req=5

Figure 2: Overview of number of records identified, discarded and included within the systematic review.
Mentions: From a total of 175 records initially identified, more than half were considered not relevant (i e, did not include data on gametocyte clearance/carriage) or were duplicates, leaving 62 relevant articles for review (Figure 2). These were published between 1998 and January 2014 and included randomized, double-blind and randomized open-label trials (phases II–IV), non-interventional observational studies, single-/multi-centre reports, retrospective analyses of previously conducted efficacy studies, pooled analyses, previously published systematic reviews, reviews, and mini-reviews.

Bottom Line: For elimination strategies to be effective, limited disease transmission, achieved through rapid reduction in the infectious parasite reservoir and decreased gametocyte carriage, will be critical.Artemisinin-based combination therapy (ACT) forms the cornerstone of WHO-recommended treatment for uncomplicated Plasmodium falciparum malaria, and in combination with other effective interventions will undoubtedly play a vital role in elimination programmes.Many studies and analyses have specifically investigated the effects of the ACT, artemether-lumefantrine (AL) on gametocyte carriage.

View Article: PubMed Central - HTML - PubMed

Affiliation: European & Developing Countries Clinical Trials Partnership (EDCTP), PO Box 19070, Tygerberg, Cape Town, South Africa. makanga@edctp.org.

ABSTRACT
While significant advances have been made in the prevention and treatment of malaria in recent years, these successes continue to fall short of the World Health Organization (WHO) goals for malaria control and elimination. For elimination strategies to be effective, limited disease transmission, achieved through rapid reduction in the infectious parasite reservoir and decreased gametocyte carriage, will be critical. Artemisinin-based combination therapy (ACT) forms the cornerstone of WHO-recommended treatment for uncomplicated Plasmodium falciparum malaria, and in combination with other effective interventions will undoubtedly play a vital role in elimination programmes. The gametocytocidal properties of artemisinins are a bonus attribute; there is epidemiological evidence of reductions in malaria incidence and transmission in African regions since the introduction of these agents. Many studies and analyses have specifically investigated the effects of the ACT, artemether-lumefantrine (AL) on gametocyte carriage. In this systematic review of 62 articles published between 1998 and January 2014, the effects of AL on gametocyte carriage and malaria transmission are compared with other artemisinin-based anti-malarials and non-ACT. The impact of AL treatment of asymptomatic carriers on population gametocyte carriage, and the potential future role of AL in malaria elimination initiatives are also considered. Despite the inherent difficulties in comparing data from a range of different studies that also utilized different diagnostic approaches to assess baseline gametocyte counts, the gametocytocidal effect of AL was proportionately consistent across the studies reviewed, suggesting that AL will continue to play a vital role in the treatment of malaria and contribute to clearing the path towards malaria elimination. However, the specific place of AL is the subject of much ongoing research and will undoubtedly be dependent on different demographic and geographical scenarios. Utilizing ACT, such as AL, within malaria elimination strategies is also associated with a number of other challenges, such as balancing potential increased use of ACT (e g, treatment of asymptomatic carriers and home-based treatment) with rational use and avoidance of drug resistance development.

Show MeSH
Related in: MedlinePlus