Limits...
Mapping genetically controlled neural circuits of social behavior and visuo-motor integration by a preliminary examination of atypical deletions with Williams syndrome.

Hoeft F, Dai L, Haas BW, Sheau K, Mimura M, Mills D, Galaburda A, Bellugi U, Korenberg JR, Reiss AL - PLoS ONE (2014)

Bottom Line: Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure.This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS.The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain.

View Article: PubMed Central - PubMed

Affiliation: Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, CA, United States of America; Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.

ABSTRACT
In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain.

Show MeSH

Related in: MedlinePlus

Gray matter volumes and cognitive profiles of typical WS, TD, and atypical deletion (AWSdel) individuals.A. Gray matter deviation maps in AWSdel individuals. First column represents VBM between group differences between WS (N = 42) and TD (N = 40). Second and third columns represent the degree to which atypical cases AWSdel-01 and AWSdel-02 deviated from the comparison group (thresholded at [z]>1.96). The fourth column represents probability maps of how many participants showed positive deviation of z > 1.96 in AWSdel-03i∼vi. Numbers in square-brackets in the fourth column indicate how many participants out of the total of 6 AWSdel-03 participants showed this deviation in its peak voxel. B. Cognitive measures and amygdala volumes (from manual volumetric measurements) are plotted for WS, TD and AWSdel groups. See Table 1 for detailed statistics. Benton judgment of line and Social approachability scores are not plotted for the AWSdel-03 children (WSdel-03ii∼vi) as age-adjusted normed scores are not available. IPS: intraparietal sulcus, OFC: orbitofrontal cortex, FG: fusiform gyrus, Lt: left, Rt: right. Error bars represent standard deviation. Left hemisphere is shown on the left side in the brain maps.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4126723&req=5

pone-0104088-g002: Gray matter volumes and cognitive profiles of typical WS, TD, and atypical deletion (AWSdel) individuals.A. Gray matter deviation maps in AWSdel individuals. First column represents VBM between group differences between WS (N = 42) and TD (N = 40). Second and third columns represent the degree to which atypical cases AWSdel-01 and AWSdel-02 deviated from the comparison group (thresholded at [z]>1.96). The fourth column represents probability maps of how many participants showed positive deviation of z > 1.96 in AWSdel-03i∼vi. Numbers in square-brackets in the fourth column indicate how many participants out of the total of 6 AWSdel-03 participants showed this deviation in its peak voxel. B. Cognitive measures and amygdala volumes (from manual volumetric measurements) are plotted for WS, TD and AWSdel groups. See Table 1 for detailed statistics. Benton judgment of line and Social approachability scores are not plotted for the AWSdel-03 children (WSdel-03ii∼vi) as age-adjusted normed scores are not available. IPS: intraparietal sulcus, OFC: orbitofrontal cortex, FG: fusiform gyrus, Lt: left, Rt: right. Error bars represent standard deviation. Left hemisphere is shown on the left side in the brain maps.

Mentions: See also Figure 2B.


Mapping genetically controlled neural circuits of social behavior and visuo-motor integration by a preliminary examination of atypical deletions with Williams syndrome.

Hoeft F, Dai L, Haas BW, Sheau K, Mimura M, Mills D, Galaburda A, Bellugi U, Korenberg JR, Reiss AL - PLoS ONE (2014)

Gray matter volumes and cognitive profiles of typical WS, TD, and atypical deletion (AWSdel) individuals.A. Gray matter deviation maps in AWSdel individuals. First column represents VBM between group differences between WS (N = 42) and TD (N = 40). Second and third columns represent the degree to which atypical cases AWSdel-01 and AWSdel-02 deviated from the comparison group (thresholded at [z]>1.96). The fourth column represents probability maps of how many participants showed positive deviation of z > 1.96 in AWSdel-03i∼vi. Numbers in square-brackets in the fourth column indicate how many participants out of the total of 6 AWSdel-03 participants showed this deviation in its peak voxel. B. Cognitive measures and amygdala volumes (from manual volumetric measurements) are plotted for WS, TD and AWSdel groups. See Table 1 for detailed statistics. Benton judgment of line and Social approachability scores are not plotted for the AWSdel-03 children (WSdel-03ii∼vi) as age-adjusted normed scores are not available. IPS: intraparietal sulcus, OFC: orbitofrontal cortex, FG: fusiform gyrus, Lt: left, Rt: right. Error bars represent standard deviation. Left hemisphere is shown on the left side in the brain maps.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4126723&req=5

pone-0104088-g002: Gray matter volumes and cognitive profiles of typical WS, TD, and atypical deletion (AWSdel) individuals.A. Gray matter deviation maps in AWSdel individuals. First column represents VBM between group differences between WS (N = 42) and TD (N = 40). Second and third columns represent the degree to which atypical cases AWSdel-01 and AWSdel-02 deviated from the comparison group (thresholded at [z]>1.96). The fourth column represents probability maps of how many participants showed positive deviation of z > 1.96 in AWSdel-03i∼vi. Numbers in square-brackets in the fourth column indicate how many participants out of the total of 6 AWSdel-03 participants showed this deviation in its peak voxel. B. Cognitive measures and amygdala volumes (from manual volumetric measurements) are plotted for WS, TD and AWSdel groups. See Table 1 for detailed statistics. Benton judgment of line and Social approachability scores are not plotted for the AWSdel-03 children (WSdel-03ii∼vi) as age-adjusted normed scores are not available. IPS: intraparietal sulcus, OFC: orbitofrontal cortex, FG: fusiform gyrus, Lt: left, Rt: right. Error bars represent standard deviation. Left hemisphere is shown on the left side in the brain maps.
Mentions: See also Figure 2B.

Bottom Line: Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure.This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS.The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain.

View Article: PubMed Central - PubMed

Affiliation: Center for Interdisciplinary Brain Sciences Research (CIBSR), Stanford University School of Medicine, Stanford, CA, United States of America; Department of Neuropsychiatry, Keio University, School of Medicine, Tokyo, Japan.

ABSTRACT
In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain.

Show MeSH
Related in: MedlinePlus