Limits...
Human fetal brain-derived neural stem/progenitor cells grafted into the adult epileptic brain restrain seizures in rat models of temporal lobe epilepsy.

Lee H, Yun S, Kim IS, Lee IS, Shin JE, Park SC, Kim WJ, Park KI - PLoS ONE (2014)

Bottom Line: However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals.Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism.These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.

View Article: PubMed Central - PubMed

Affiliation: Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.

ABSTRACT
Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.

Show MeSH

Related in: MedlinePlus

Effect of human NSPC grafting on aberrant mossy fiber sprouting in pilocarpine-treated animals.(A–F) Timm staining exhibits mossy fiber staining from age-matched intact control (A, D), vehicle-injected pilocarpine-treated (B, E) and huNSPCs-transplanted pilocarpine-treated rats (C, F) 3 months following transplantation. D–F are high-magnification views of areas indicated by arrows in A–C, respectively. Arrowheads in D–F indicate the supragranular region of the dentate gyrus. Pilocarpine-treated rats reveal mossy fiber sprouting with an increased density of Timm granules in the supragranular region (B, C, E, F), whereas control rats did not (A, D). Scale bar, 500 µm (C), 100 µm (F). (G) NSPC-transplanted and vehicle injected rats had higher Timm scores than the control group (*P<0.05). Error bars, SEM. No significant difference regarding Timm score was found between NSPC- and vehicle-injected groups.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4126719&req=5

pone-0104092-g011: Effect of human NSPC grafting on aberrant mossy fiber sprouting in pilocarpine-treated animals.(A–F) Timm staining exhibits mossy fiber staining from age-matched intact control (A, D), vehicle-injected pilocarpine-treated (B, E) and huNSPCs-transplanted pilocarpine-treated rats (C, F) 3 months following transplantation. D–F are high-magnification views of areas indicated by arrows in A–C, respectively. Arrowheads in D–F indicate the supragranular region of the dentate gyrus. Pilocarpine-treated rats reveal mossy fiber sprouting with an increased density of Timm granules in the supragranular region (B, C, E, F), whereas control rats did not (A, D). Scale bar, 500 µm (C), 100 µm (F). (G) NSPC-transplanted and vehicle injected rats had higher Timm scores than the control group (*P<0.05). Error bars, SEM. No significant difference regarding Timm score was found between NSPC- and vehicle-injected groups.

Mentions: Aberrant sprouting of mossy fibers into the inner molecular layer of the DG of the hippocampus is one of the best-known structural changes in TLE models [2]–[5]. Because mossy fiber sprouting (MFS) is known to be linked to increased seizure susceptibility in TLE [51], we examined whether huNSPCs grafting could reduce MFS in the pilocarpine model. To visualize mossy fibers, we performed Timm staining that selectively labeled zinc-containing mossy fibers and recorded the Timm score to evaluate the extent of MFS. In age-matched intact rats (n = 4), Timm staining was nearly absent in the supragranular region of the DG (Fig. 11A, D). However, compared with intact rats, prominent Timm granules were present in the supragranular region in pilocarpine-treated rats, indicating aberrant MFS (Fig. 11B, C, E, F). The statistical analysis showed that the Timm score for MFS was not significantly different between vehicle-injected and NSPC-transplanted rats (n = 4 and 4, respectively; P = 1.0; Fig. 11G). This finding indicates that the significant reduction in seizure frequency seen with huNSPCs transplantation was not the result of a change of aberrant mossy fiber sprouting in the dentate gyrus.


Human fetal brain-derived neural stem/progenitor cells grafted into the adult epileptic brain restrain seizures in rat models of temporal lobe epilepsy.

Lee H, Yun S, Kim IS, Lee IS, Shin JE, Park SC, Kim WJ, Park KI - PLoS ONE (2014)

Effect of human NSPC grafting on aberrant mossy fiber sprouting in pilocarpine-treated animals.(A–F) Timm staining exhibits mossy fiber staining from age-matched intact control (A, D), vehicle-injected pilocarpine-treated (B, E) and huNSPCs-transplanted pilocarpine-treated rats (C, F) 3 months following transplantation. D–F are high-magnification views of areas indicated by arrows in A–C, respectively. Arrowheads in D–F indicate the supragranular region of the dentate gyrus. Pilocarpine-treated rats reveal mossy fiber sprouting with an increased density of Timm granules in the supragranular region (B, C, E, F), whereas control rats did not (A, D). Scale bar, 500 µm (C), 100 µm (F). (G) NSPC-transplanted and vehicle injected rats had higher Timm scores than the control group (*P<0.05). Error bars, SEM. No significant difference regarding Timm score was found between NSPC- and vehicle-injected groups.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4126719&req=5

pone-0104092-g011: Effect of human NSPC grafting on aberrant mossy fiber sprouting in pilocarpine-treated animals.(A–F) Timm staining exhibits mossy fiber staining from age-matched intact control (A, D), vehicle-injected pilocarpine-treated (B, E) and huNSPCs-transplanted pilocarpine-treated rats (C, F) 3 months following transplantation. D–F are high-magnification views of areas indicated by arrows in A–C, respectively. Arrowheads in D–F indicate the supragranular region of the dentate gyrus. Pilocarpine-treated rats reveal mossy fiber sprouting with an increased density of Timm granules in the supragranular region (B, C, E, F), whereas control rats did not (A, D). Scale bar, 500 µm (C), 100 µm (F). (G) NSPC-transplanted and vehicle injected rats had higher Timm scores than the control group (*P<0.05). Error bars, SEM. No significant difference regarding Timm score was found between NSPC- and vehicle-injected groups.
Mentions: Aberrant sprouting of mossy fibers into the inner molecular layer of the DG of the hippocampus is one of the best-known structural changes in TLE models [2]–[5]. Because mossy fiber sprouting (MFS) is known to be linked to increased seizure susceptibility in TLE [51], we examined whether huNSPCs grafting could reduce MFS in the pilocarpine model. To visualize mossy fibers, we performed Timm staining that selectively labeled zinc-containing mossy fibers and recorded the Timm score to evaluate the extent of MFS. In age-matched intact rats (n = 4), Timm staining was nearly absent in the supragranular region of the DG (Fig. 11A, D). However, compared with intact rats, prominent Timm granules were present in the supragranular region in pilocarpine-treated rats, indicating aberrant MFS (Fig. 11B, C, E, F). The statistical analysis showed that the Timm score for MFS was not significantly different between vehicle-injected and NSPC-transplanted rats (n = 4 and 4, respectively; P = 1.0; Fig. 11G). This finding indicates that the significant reduction in seizure frequency seen with huNSPCs transplantation was not the result of a change of aberrant mossy fiber sprouting in the dentate gyrus.

Bottom Line: However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals.Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism.These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.

View Article: PubMed Central - PubMed

Affiliation: Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.

ABSTRACT
Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.

Show MeSH
Related in: MedlinePlus