Limits...
Human fetal brain-derived neural stem/progenitor cells grafted into the adult epileptic brain restrain seizures in rat models of temporal lobe epilepsy.

Lee H, Yun S, Kim IS, Lee IS, Shin JE, Park SC, Kim WJ, Park KI - PLoS ONE (2014)

Bottom Line: However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals.Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism.These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.

View Article: PubMed Central - PubMed

Affiliation: Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.

ABSTRACT
Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.

Show MeSH

Related in: MedlinePlus

HPLC analysis for GABA in human NSPCs.(A) huNSPCs contain GABA under both proliferation (Prol) and differentiation (Diff) conditions in culture. Note that the total intracellular GABA content of NSPCs was significantly higher under Diff conditions than under Prol conditions. (B, C) NSPCs under Diff conditions were incubated in basal (4 mM KCl) or high K+ (53 mM KCl) medium, and intracellular GABA content (B) and GABA release into the medium (C) were quantified. * Significantly different from that under Prol conditions at P<0.05; † significantly different from that in the basal medium at P<0.05; error bars indicate ±SEM.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4126719&req=5

pone-0104092-g003: HPLC analysis for GABA in human NSPCs.(A) huNSPCs contain GABA under both proliferation (Prol) and differentiation (Diff) conditions in culture. Note that the total intracellular GABA content of NSPCs was significantly higher under Diff conditions than under Prol conditions. (B, C) NSPCs under Diff conditions were incubated in basal (4 mM KCl) or high K+ (53 mM KCl) medium, and intracellular GABA content (B) and GABA release into the medium (C) were quantified. * Significantly different from that under Prol conditions at P<0.05; † significantly different from that in the basal medium at P<0.05; error bars indicate ±SEM.

Mentions: After finding evidence that huNSPCs could differentiate into GABAergic neurons, we examined whether NSPC-derived cells actually released GABA under basal and high K+ conditions in culture using HPLC. Intracellular GABA content of NSPCs under differentiation conditions (8,018.4±514.9 pmol/mg, n = 3) was about twice higher than that under proliferation conditions (4,288.4±118.4 pmol/mg) (P = 0.010; Fig. 3A). When NSPCs under differentiation conditions were incubated in basal or high K+ medium, the intracellular GABA content of cells incubated in basal medium (11,119.8±871.8 pmol/mg, n = 3) was slightly higher than that in the high K+ medium (8,494.0±682.0 pmol/mg) (P = 0.20; Fig. 3B). However, the amount of GABA released from differentiated NSPCs into the medium was significantly higher in the high K+ medium (507.69±11.39 pmol/mg) than that in the basal medium (293.20±23.78 pmol/mg) (P = 0.029; Fig. 3C), suggesting that huNSPC-derived differentiated cells can increase efflux of GABA in response to depolarization induced by elevated K+.


Human fetal brain-derived neural stem/progenitor cells grafted into the adult epileptic brain restrain seizures in rat models of temporal lobe epilepsy.

Lee H, Yun S, Kim IS, Lee IS, Shin JE, Park SC, Kim WJ, Park KI - PLoS ONE (2014)

HPLC analysis for GABA in human NSPCs.(A) huNSPCs contain GABA under both proliferation (Prol) and differentiation (Diff) conditions in culture. Note that the total intracellular GABA content of NSPCs was significantly higher under Diff conditions than under Prol conditions. (B, C) NSPCs under Diff conditions were incubated in basal (4 mM KCl) or high K+ (53 mM KCl) medium, and intracellular GABA content (B) and GABA release into the medium (C) were quantified. * Significantly different from that under Prol conditions at P<0.05; † significantly different from that in the basal medium at P<0.05; error bars indicate ±SEM.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4126719&req=5

pone-0104092-g003: HPLC analysis for GABA in human NSPCs.(A) huNSPCs contain GABA under both proliferation (Prol) and differentiation (Diff) conditions in culture. Note that the total intracellular GABA content of NSPCs was significantly higher under Diff conditions than under Prol conditions. (B, C) NSPCs under Diff conditions were incubated in basal (4 mM KCl) or high K+ (53 mM KCl) medium, and intracellular GABA content (B) and GABA release into the medium (C) were quantified. * Significantly different from that under Prol conditions at P<0.05; † significantly different from that in the basal medium at P<0.05; error bars indicate ±SEM.
Mentions: After finding evidence that huNSPCs could differentiate into GABAergic neurons, we examined whether NSPC-derived cells actually released GABA under basal and high K+ conditions in culture using HPLC. Intracellular GABA content of NSPCs under differentiation conditions (8,018.4±514.9 pmol/mg, n = 3) was about twice higher than that under proliferation conditions (4,288.4±118.4 pmol/mg) (P = 0.010; Fig. 3A). When NSPCs under differentiation conditions were incubated in basal or high K+ medium, the intracellular GABA content of cells incubated in basal medium (11,119.8±871.8 pmol/mg, n = 3) was slightly higher than that in the high K+ medium (8,494.0±682.0 pmol/mg) (P = 0.20; Fig. 3B). However, the amount of GABA released from differentiated NSPCs into the medium was significantly higher in the high K+ medium (507.69±11.39 pmol/mg) than that in the basal medium (293.20±23.78 pmol/mg) (P = 0.029; Fig. 3C), suggesting that huNSPC-derived differentiated cells can increase efflux of GABA in response to depolarization induced by elevated K+.

Bottom Line: However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals.Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism.These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.

View Article: PubMed Central - PubMed

Affiliation: Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea.

ABSTRACT
Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.

Show MeSH
Related in: MedlinePlus