Limits...
A framework for identifying plant species to be used as 'ecological engineers' for fixing soil on unstable slopes.

Ghestem M, Cao K, Ma W, Rowe N, Leclerc R, Gadenne C, Stokes A - PLoS ONE (2014)

Bottom Line: Significant differences between all factors were found, depending on species.We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity.We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

View Article: PubMed Central - PubMed

Affiliation: AgroParis Tech, UMR AMAP, Montpellier, France.

ABSTRACT
Major reforestation programs have been initiated on hillsides prone to erosion and landslides in China, but no framework exists to guide managers in the choice of plant species. We developed such a framework based on the suitability of given plant traits for fixing soil on steep slopes in western Yunnan, China. We examined the utility of 55 native and exotic species with regard to the services they provided. We then chose nine species differing in life form. Plant root system architecture, root mechanical and physiological traits were then measured at two adjacent field sites. One site was highly unstable, with severe soil slippage and erosion. The second site had been replanted 8 years previously and appeared to be physically stable. How root traits differed between sites, season, depth in soil and distance from the plant stem were determined. Root system morphology was analysed by considering architectural traits (root angle, depth, diameter and volume) both up- and downslope. Significant differences between all factors were found, depending on species. We estimated the most useful architectural and mechanical traits for physically fixing soil in place. We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity. Scores were assigned to each species based on traits. No one species possessed a suite of highly desirable traits, therefore mixtures of species should be used on vulnerable slopes. We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

Show MeSH

Related in: MedlinePlus

Best species depending on the location on the hotspot of instability.On degraded hotspots, the diversity of root systems will play an important role for slope stability. Roots growing upslope from the stem will have more chance to cross the potential shear plane if the plant grows at the top of the slope. Thus, root systems with desirable traits upslope of the stem will act more efficiently if they are located at the top of the slope, whereas the inverse is applicable for downslope roots. Root systems with desirable traits deeper in the soil will act more efficiently in the middle of the hotspot.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4126646&req=5

pone-0095876-g012: Best species depending on the location on the hotspot of instability.On degraded hotspots, the diversity of root systems will play an important role for slope stability. Roots growing upslope from the stem will have more chance to cross the potential shear plane if the plant grows at the top of the slope. Thus, root systems with desirable traits upslope of the stem will act more efficiently if they are located at the top of the slope, whereas the inverse is applicable for downslope roots. Root systems with desirable traits deeper in the soil will act more efficiently in the middle of the hotspot.

Mentions: To reinforce a slope against landslides, roots have to cross the potential shear plane. The potential shear plane of a slope can be circular or parallel to the soil surface (Figure 12). Therefore, as it is unlikely that any one species can possess an entire suite of traits that are optimal for increasing slope stability, different species can be planted at different positions along a slope, to optimise soil reinforcement. For example, species with vertical and strong roots will fix soil better in the middle of the slope, whereas plants with more and stronger roots upslope or downslope will better reinforce the top or toe of the slope, respectively (Figure 12), [28]. In our study on small areas of soil slippage, or hotspots, the precise location of species is all the more relevant because the depth of the potential shear zone may increase or decrease rapidly from the top to the bottom of the hotspot. Except for A. hispidus, F. tikoua and J. curcas, all species had roots which possessed different traits, depending on the depth of the root as well as its orientation with regard to slope direction.


A framework for identifying plant species to be used as 'ecological engineers' for fixing soil on unstable slopes.

Ghestem M, Cao K, Ma W, Rowe N, Leclerc R, Gadenne C, Stokes A - PLoS ONE (2014)

Best species depending on the location on the hotspot of instability.On degraded hotspots, the diversity of root systems will play an important role for slope stability. Roots growing upslope from the stem will have more chance to cross the potential shear plane if the plant grows at the top of the slope. Thus, root systems with desirable traits upslope of the stem will act more efficiently if they are located at the top of the slope, whereas the inverse is applicable for downslope roots. Root systems with desirable traits deeper in the soil will act more efficiently in the middle of the hotspot.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4126646&req=5

pone-0095876-g012: Best species depending on the location on the hotspot of instability.On degraded hotspots, the diversity of root systems will play an important role for slope stability. Roots growing upslope from the stem will have more chance to cross the potential shear plane if the plant grows at the top of the slope. Thus, root systems with desirable traits upslope of the stem will act more efficiently if they are located at the top of the slope, whereas the inverse is applicable for downslope roots. Root systems with desirable traits deeper in the soil will act more efficiently in the middle of the hotspot.
Mentions: To reinforce a slope against landslides, roots have to cross the potential shear plane. The potential shear plane of a slope can be circular or parallel to the soil surface (Figure 12). Therefore, as it is unlikely that any one species can possess an entire suite of traits that are optimal for increasing slope stability, different species can be planted at different positions along a slope, to optimise soil reinforcement. For example, species with vertical and strong roots will fix soil better in the middle of the slope, whereas plants with more and stronger roots upslope or downslope will better reinforce the top or toe of the slope, respectively (Figure 12), [28]. In our study on small areas of soil slippage, or hotspots, the precise location of species is all the more relevant because the depth of the potential shear zone may increase or decrease rapidly from the top to the bottom of the hotspot. Except for A. hispidus, F. tikoua and J. curcas, all species had roots which possessed different traits, depending on the depth of the root as well as its orientation with regard to slope direction.

Bottom Line: Significant differences between all factors were found, depending on species.We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity.We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

View Article: PubMed Central - PubMed

Affiliation: AgroParis Tech, UMR AMAP, Montpellier, France.

ABSTRACT
Major reforestation programs have been initiated on hillsides prone to erosion and landslides in China, but no framework exists to guide managers in the choice of plant species. We developed such a framework based on the suitability of given plant traits for fixing soil on steep slopes in western Yunnan, China. We examined the utility of 55 native and exotic species with regard to the services they provided. We then chose nine species differing in life form. Plant root system architecture, root mechanical and physiological traits were then measured at two adjacent field sites. One site was highly unstable, with severe soil slippage and erosion. The second site had been replanted 8 years previously and appeared to be physically stable. How root traits differed between sites, season, depth in soil and distance from the plant stem were determined. Root system morphology was analysed by considering architectural traits (root angle, depth, diameter and volume) both up- and downslope. Significant differences between all factors were found, depending on species. We estimated the most useful architectural and mechanical traits for physically fixing soil in place. We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity. Scores were assigned to each species based on traits. No one species possessed a suite of highly desirable traits, therefore mixtures of species should be used on vulnerable slopes. We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

Show MeSH
Related in: MedlinePlus