Limits...
A framework for identifying plant species to be used as 'ecological engineers' for fixing soil on unstable slopes.

Ghestem M, Cao K, Ma W, Rowe N, Leclerc R, Gadenne C, Stokes A - PLoS ONE (2014)

Bottom Line: Significant differences between all factors were found, depending on species.We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity.We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

View Article: PubMed Central - PubMed

Affiliation: AgroParis Tech, UMR AMAP, Montpellier, France.

ABSTRACT
Major reforestation programs have been initiated on hillsides prone to erosion and landslides in China, but no framework exists to guide managers in the choice of plant species. We developed such a framework based on the suitability of given plant traits for fixing soil on steep slopes in western Yunnan, China. We examined the utility of 55 native and exotic species with regard to the services they provided. We then chose nine species differing in life form. Plant root system architecture, root mechanical and physiological traits were then measured at two adjacent field sites. One site was highly unstable, with severe soil slippage and erosion. The second site had been replanted 8 years previously and appeared to be physically stable. How root traits differed between sites, season, depth in soil and distance from the plant stem were determined. Root system morphology was analysed by considering architectural traits (root angle, depth, diameter and volume) both up- and downslope. Significant differences between all factors were found, depending on species. We estimated the most useful architectural and mechanical traits for physically fixing soil in place. We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity. Scores were assigned to each species based on traits. No one species possessed a suite of highly desirable traits, therefore mixtures of species should be used on vulnerable slopes. We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

Show MeSH

Related in: MedlinePlus

Ultimate strain at failure.Ultimate strain at failure (εult) for each species. Vertical bars denote 0.95 confidence intervals, letters indicate significant differences between species (P<0.05).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4126646&req=5

pone-0095876-g008: Ultimate strain at failure.Ultimate strain at failure (εult) for each species. Vertical bars denote 0.95 confidence intervals, letters indicate significant differences between species (P<0.05).

Mentions: The mechanical behaviour of roots differed between species with regard to strain. A positive relationship between εult and root diameter was significant for A. codonocephala (r = 0.23, P<0.001) and P. stricta only (r = 0.48, P<0.001). For all other species, correlations between εult and root diameter were not significant. Mean εult was significantly different depending on species (F8,1105 = 32.34; P<0.001; Figure 8). F. tikoua had the highest εult (mean εult = 23,24%), followed by A. hispidus, B. championii and R. chinensis (Figure 8). A. americana, A. codonocephala, C. anomala, J. curcas had relatively small mean εult with P. stricta having the the smallest εult (mean εult = 9,81%).


A framework for identifying plant species to be used as 'ecological engineers' for fixing soil on unstable slopes.

Ghestem M, Cao K, Ma W, Rowe N, Leclerc R, Gadenne C, Stokes A - PLoS ONE (2014)

Ultimate strain at failure.Ultimate strain at failure (εult) for each species. Vertical bars denote 0.95 confidence intervals, letters indicate significant differences between species (P<0.05).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4126646&req=5

pone-0095876-g008: Ultimate strain at failure.Ultimate strain at failure (εult) for each species. Vertical bars denote 0.95 confidence intervals, letters indicate significant differences between species (P<0.05).
Mentions: The mechanical behaviour of roots differed between species with regard to strain. A positive relationship between εult and root diameter was significant for A. codonocephala (r = 0.23, P<0.001) and P. stricta only (r = 0.48, P<0.001). For all other species, correlations between εult and root diameter were not significant. Mean εult was significantly different depending on species (F8,1105 = 32.34; P<0.001; Figure 8). F. tikoua had the highest εult (mean εult = 23,24%), followed by A. hispidus, B. championii and R. chinensis (Figure 8). A. americana, A. codonocephala, C. anomala, J. curcas had relatively small mean εult with P. stricta having the the smallest εult (mean εult = 9,81%).

Bottom Line: Significant differences between all factors were found, depending on species.We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity.We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

View Article: PubMed Central - PubMed

Affiliation: AgroParis Tech, UMR AMAP, Montpellier, France.

ABSTRACT
Major reforestation programs have been initiated on hillsides prone to erosion and landslides in China, but no framework exists to guide managers in the choice of plant species. We developed such a framework based on the suitability of given plant traits for fixing soil on steep slopes in western Yunnan, China. We examined the utility of 55 native and exotic species with regard to the services they provided. We then chose nine species differing in life form. Plant root system architecture, root mechanical and physiological traits were then measured at two adjacent field sites. One site was highly unstable, with severe soil slippage and erosion. The second site had been replanted 8 years previously and appeared to be physically stable. How root traits differed between sites, season, depth in soil and distance from the plant stem were determined. Root system morphology was analysed by considering architectural traits (root angle, depth, diameter and volume) both up- and downslope. Significant differences between all factors were found, depending on species. We estimated the most useful architectural and mechanical traits for physically fixing soil in place. We then combined these results with those concerning root physiological traits, which were used as a proxy for root metabolic activity. Scores were assigned to each species based on traits. No one species possessed a suite of highly desirable traits, therefore mixtures of species should be used on vulnerable slopes. We also propose a conceptual model describing how to position plants on an unstable site, based on root system traits.

Show MeSH
Related in: MedlinePlus