Limits...
Long-term plasticity determines the postsynaptic response to correlated afferents with multivesicular short-term synaptic depression

View Article: PubMed Central - HTML

No MeSH data available.


Related in: MedlinePlus

Long-term plasticity, which alters release-site number n, sets the sensitivity to presynaptic synchrony S. (A) Postsynaptic rate as a function of release-sites per presynaptic neuron n for different numbers of presynaptic cells firing together S (synchrony). (B) Heat map of the postsynaptic rate as a function of presynaptic release-site number n and presynaptic synchrony S. (C) Postsynaptic rate as a function of presynaptic synchrony S for different examples of release-site number. Long-term potentiation makes the postsynaptic cell more sensitive to weak synchrony, whereas long-term depression sensitizes the cell to stronger synchrony.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4126523&req=5

Figure 1: Long-term plasticity, which alters release-site number n, sets the sensitivity to presynaptic synchrony S. (A) Postsynaptic rate as a function of release-sites per presynaptic neuron n for different numbers of presynaptic cells firing together S (synchrony). (B) Heat map of the postsynaptic rate as a function of presynaptic release-site number n and presynaptic synchrony S. (C) Postsynaptic rate as a function of presynaptic synchrony S for different examples of release-site number. Long-term potentiation makes the postsynaptic cell more sensitive to weak synchrony, whereas long-term depression sensitizes the cell to stronger synchrony.

Mentions: To understand how correlations from synaptic dynamics and from presynaptic synchrony shape the postsynaptic response, we studied a model of multiple release site short-term plasticity and derived exact results for the crosscorrelation function of vesicle occupancy and neurotransmitter release, as well as the postsynaptic voltage variance [2]. Using approximate forms for the postsynaptic firing rate in the limits of low and high correlations, we demonstrated that short-term depression leads to a maximum response for an intermediate number of presynaptic release sites, and that this leads to a tuning-curve response peaked at an optimal presynaptic synchrony set by the number of independent neurotransmitter release sites per presynaptic neuron (Figure 1).


Long-term plasticity determines the postsynaptic response to correlated afferents with multivesicular short-term synaptic depression
Long-term plasticity, which alters release-site number n, sets the sensitivity to presynaptic synchrony S. (A) Postsynaptic rate as a function of release-sites per presynaptic neuron n for different numbers of presynaptic cells firing together S (synchrony). (B) Heat map of the postsynaptic rate as a function of presynaptic release-site number n and presynaptic synchrony S. (C) Postsynaptic rate as a function of presynaptic synchrony S for different examples of release-site number. Long-term potentiation makes the postsynaptic cell more sensitive to weak synchrony, whereas long-term depression sensitizes the cell to stronger synchrony.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4126523&req=5

Figure 1: Long-term plasticity, which alters release-site number n, sets the sensitivity to presynaptic synchrony S. (A) Postsynaptic rate as a function of release-sites per presynaptic neuron n for different numbers of presynaptic cells firing together S (synchrony). (B) Heat map of the postsynaptic rate as a function of presynaptic release-site number n and presynaptic synchrony S. (C) Postsynaptic rate as a function of presynaptic synchrony S for different examples of release-site number. Long-term potentiation makes the postsynaptic cell more sensitive to weak synchrony, whereas long-term depression sensitizes the cell to stronger synchrony.
Mentions: To understand how correlations from synaptic dynamics and from presynaptic synchrony shape the postsynaptic response, we studied a model of multiple release site short-term plasticity and derived exact results for the crosscorrelation function of vesicle occupancy and neurotransmitter release, as well as the postsynaptic voltage variance [2]. Using approximate forms for the postsynaptic firing rate in the limits of low and high correlations, we demonstrated that short-term depression leads to a maximum response for an intermediate number of presynaptic release sites, and that this leads to a tuning-curve response peaked at an optimal presynaptic synchrony set by the number of independent neurotransmitter release sites per presynaptic neuron (Figure 1).

View Article: PubMed Central - HTML

No MeSH data available.


Related in: MedlinePlus