Limits...
Vibrating Makes for Better Seeing: From the Fly's Micro-Eye Movements to Hyperacute Visual Sensors.

Viollet S - Front Bioeng Biotechnol (2014)

Bottom Line: Several robotic platforms have been endowed with artificial visual sensors performing periodic micro-scanning movements.Artificial eyes performing these active retinal micro-movements have some extremely interesting properties, such as hyperacuity and the ability to detect very slow movements (motion hyperacuity).The fundamental role of miniature eye movements still remains to be described in detail, but several studies on natural and artificial eyes have advanced considerably toward this goal.

View Article: PubMed Central - PubMed

Affiliation: Aix-Marseille University, CNRS, ISM UMR 7287 , Marseille , France.

ABSTRACT
Active vision means that visual perception not only depends closely on the subject's own movements, but that these movements actually contribute to the visual perceptual processes. Vertebrates' and invertebrates' eye movements are probably part of an active visual process, but their exact role still remains to be determined. In this paper, studies on the retinal micro-movements occurring in the compound eye of the fly are reviewed. Several authors have located and identified the muscles involved in these small retinal movements. Others have established that these retinal micro-movements occur in walking and flying flies, but their exact functional role still remains to be determined. Many robotic studies have been performed in which animals' (flies' and spiders') miniature eye movements have been modeled, simulated, and even implemented mechanically. Several robotic platforms have been endowed with artificial visual sensors performing periodic micro-scanning movements. Artificial eyes performing these active retinal micro-movements have some extremely interesting properties, such as hyperacuity and the ability to detect very slow movements (motion hyperacuity). The fundamental role of miniature eye movements still remains to be described in detail, but several studies on natural and artificial eyes have advanced considerably toward this goal.

No MeSH data available.


Related in: MedlinePlus

(A) A one-chip scanning sensor obtained using a photolithographic process. The back-and-forth movement of the visual axes was implemented here via an electrostatically driven scanning slit placed over the photodiodes [reproduced with permission from Hoshino et al. (2001)]. (B) A visual scanning sensor inspired by the spiders retinal movements. The passive scanning movements were powered here by environmental vibrations applied to the device (Landolt and Mitros, 2001). (C) Bio-inspired hyperacute vibrating eye composed of 6 pixels placed behind a fixed lens. The micro-scanning movement imposed to the whole eye was implemented by means of a tiny eccentric mechanism coupled to a small stepper motor (Juston and Viollet, 2012).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4126468&req=5

Figure 4: (A) A one-chip scanning sensor obtained using a photolithographic process. The back-and-forth movement of the visual axes was implemented here via an electrostatically driven scanning slit placed over the photodiodes [reproduced with permission from Hoshino et al. (2001)]. (B) A visual scanning sensor inspired by the spiders retinal movements. The passive scanning movements were powered here by environmental vibrations applied to the device (Landolt and Mitros, 2001). (C) Bio-inspired hyperacute vibrating eye composed of 6 pixels placed behind a fixed lens. The micro-scanning movement imposed to the whole eye was implemented by means of a tiny eccentric mechanism coupled to a small stepper motor (Juston and Viollet, 2012).

Mentions: In 1996, Mura and Franceschini developed the first micro-scanning sensor based on the periodic retinal micro-movements observed in the fly (Mura and Franceschini, 1996). Thanks to its motion hyperacuity, this scanning eye was capable of detecting low levels of translational optic flow such as those encountered by a mobile robot around its heading direction (the focus of expansion). This was followed by the development of another micro-scanning visual sensor (Viollet and Franceschini, 1999a), which enabled a small aerial robot to locate a moving target, fixate it, and follow it smoothly (Viollet and Franceschini, 1999b, 2001). Several attempts (see Figures 4A–C) have been made to develop bio-inspired scanning sensors based on vibrating optic fibers (Mura and Shimoyama, 1998), a compound eye structure (Hoshino et al., 2000, 2001), passive structure (Landolt and Mitros, 2001), an actuated mirror (Landolt and Mitros, 2001), and even a tiny eccentric mechanism (Juston and Viollet, 2012). In these studies, an active visual process was mainly used to improve the detection of slowly moving targets. In the field of mechatronics, active movements applied to the optic fibers of a visual sensor have been used in several industrial applications to read bar codes (Yeatman et al., 2004).


Vibrating Makes for Better Seeing: From the Fly's Micro-Eye Movements to Hyperacute Visual Sensors.

Viollet S - Front Bioeng Biotechnol (2014)

(A) A one-chip scanning sensor obtained using a photolithographic process. The back-and-forth movement of the visual axes was implemented here via an electrostatically driven scanning slit placed over the photodiodes [reproduced with permission from Hoshino et al. (2001)]. (B) A visual scanning sensor inspired by the spiders retinal movements. The passive scanning movements were powered here by environmental vibrations applied to the device (Landolt and Mitros, 2001). (C) Bio-inspired hyperacute vibrating eye composed of 6 pixels placed behind a fixed lens. The micro-scanning movement imposed to the whole eye was implemented by means of a tiny eccentric mechanism coupled to a small stepper motor (Juston and Viollet, 2012).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4126468&req=5

Figure 4: (A) A one-chip scanning sensor obtained using a photolithographic process. The back-and-forth movement of the visual axes was implemented here via an electrostatically driven scanning slit placed over the photodiodes [reproduced with permission from Hoshino et al. (2001)]. (B) A visual scanning sensor inspired by the spiders retinal movements. The passive scanning movements were powered here by environmental vibrations applied to the device (Landolt and Mitros, 2001). (C) Bio-inspired hyperacute vibrating eye composed of 6 pixels placed behind a fixed lens. The micro-scanning movement imposed to the whole eye was implemented by means of a tiny eccentric mechanism coupled to a small stepper motor (Juston and Viollet, 2012).
Mentions: In 1996, Mura and Franceschini developed the first micro-scanning sensor based on the periodic retinal micro-movements observed in the fly (Mura and Franceschini, 1996). Thanks to its motion hyperacuity, this scanning eye was capable of detecting low levels of translational optic flow such as those encountered by a mobile robot around its heading direction (the focus of expansion). This was followed by the development of another micro-scanning visual sensor (Viollet and Franceschini, 1999a), which enabled a small aerial robot to locate a moving target, fixate it, and follow it smoothly (Viollet and Franceschini, 1999b, 2001). Several attempts (see Figures 4A–C) have been made to develop bio-inspired scanning sensors based on vibrating optic fibers (Mura and Shimoyama, 1998), a compound eye structure (Hoshino et al., 2000, 2001), passive structure (Landolt and Mitros, 2001), an actuated mirror (Landolt and Mitros, 2001), and even a tiny eccentric mechanism (Juston and Viollet, 2012). In these studies, an active visual process was mainly used to improve the detection of slowly moving targets. In the field of mechatronics, active movements applied to the optic fibers of a visual sensor have been used in several industrial applications to read bar codes (Yeatman et al., 2004).

Bottom Line: Several robotic platforms have been endowed with artificial visual sensors performing periodic micro-scanning movements.Artificial eyes performing these active retinal micro-movements have some extremely interesting properties, such as hyperacuity and the ability to detect very slow movements (motion hyperacuity).The fundamental role of miniature eye movements still remains to be described in detail, but several studies on natural and artificial eyes have advanced considerably toward this goal.

View Article: PubMed Central - PubMed

Affiliation: Aix-Marseille University, CNRS, ISM UMR 7287 , Marseille , France.

ABSTRACT
Active vision means that visual perception not only depends closely on the subject's own movements, but that these movements actually contribute to the visual perceptual processes. Vertebrates' and invertebrates' eye movements are probably part of an active visual process, but their exact role still remains to be determined. In this paper, studies on the retinal micro-movements occurring in the compound eye of the fly are reviewed. Several authors have located and identified the muscles involved in these small retinal movements. Others have established that these retinal micro-movements occur in walking and flying flies, but their exact functional role still remains to be determined. Many robotic studies have been performed in which animals' (flies' and spiders') miniature eye movements have been modeled, simulated, and even implemented mechanically. Several robotic platforms have been endowed with artificial visual sensors performing periodic micro-scanning movements. Artificial eyes performing these active retinal micro-movements have some extremely interesting properties, such as hyperacuity and the ability to detect very slow movements (motion hyperacuity). The fundamental role of miniature eye movements still remains to be described in detail, but several studies on natural and artificial eyes have advanced considerably toward this goal.

No MeSH data available.


Related in: MedlinePlus