Limits...
Vibrating Makes for Better Seeing: From the Fly's Micro-Eye Movements to Hyperacute Visual Sensors.

Viollet S - Front Bioeng Biotechnol (2014)

Bottom Line: Several robotic platforms have been endowed with artificial visual sensors performing periodic micro-scanning movements.Artificial eyes performing these active retinal micro-movements have some extremely interesting properties, such as hyperacuity and the ability to detect very slow movements (motion hyperacuity).The fundamental role of miniature eye movements still remains to be described in detail, but several studies on natural and artificial eyes have advanced considerably toward this goal.

View Article: PubMed Central - PubMed

Affiliation: Aix-Marseille University, CNRS, ISM UMR 7287 , Marseille , France.

ABSTRACT
Active vision means that visual perception not only depends closely on the subject's own movements, but that these movements actually contribute to the visual perceptual processes. Vertebrates' and invertebrates' eye movements are probably part of an active visual process, but their exact role still remains to be determined. In this paper, studies on the retinal micro-movements occurring in the compound eye of the fly are reviewed. Several authors have located and identified the muscles involved in these small retinal movements. Others have established that these retinal micro-movements occur in walking and flying flies, but their exact functional role still remains to be determined. Many robotic studies have been performed in which animals' (flies' and spiders') miniature eye movements have been modeled, simulated, and even implemented mechanically. Several robotic platforms have been endowed with artificial visual sensors performing periodic micro-scanning movements. Artificial eyes performing these active retinal micro-movements have some extremely interesting properties, such as hyperacuity and the ability to detect very slow movements (motion hyperacuity). The fundamental role of miniature eye movements still remains to be described in detail, but several studies on natural and artificial eyes have advanced considerably toward this goal.

No MeSH data available.


Related in: MedlinePlus

(A) Top view of a fly’s head showing the orbito-tentorialis muscle (MOT in red) attached to the back of the head (the fixed part: TT) and the base of the retina (the moving part: RET). The two spikes recorded (one generated by the nerve and one by the MOT) show that extracellular recordings can be used to record the activity of this muscle. Adapted from (Hengstenberg, 1972). (B) Head of a Calliphora vomitoria (Picture: J. J. Harrison, Wikimedia commons).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4126468&req=5

Figure 1: (A) Top view of a fly’s head showing the orbito-tentorialis muscle (MOT in red) attached to the back of the head (the fixed part: TT) and the base of the retina (the moving part: RET). The two spikes recorded (one generated by the nerve and one by the MOT) show that extracellular recordings can be used to record the activity of this muscle. Adapted from (Hengstenberg, 1972). (B) Head of a Calliphora vomitoria (Picture: J. J. Harrison, Wikimedia commons).

Mentions: In their 1965 study, Kuiper and Leutscher-Hazelhoff described what they called clock-spikes occurring in the third ganglion layer of the optic lobe (Kuiper and Leutscher-Hazelhoff, 1965). Although the firing rate was found to be very consistent (50 Hz) whatever the type of stimulus used (electric light, flash light, etc.), it increased with the temperature. As the authors thought it was unlikely that flies might be equipped with a built-in thermometer, they suggested that “clock-spikes” might provide the visual system with inputs serving to locate objects, but the insect had to be aware of its velocity and the line of sight of the ommatidium of interest. A few years later, by placing a micro-electrode (30 μm in size) in contact with a specific muscle in the blowfly’s head called the orbito-tentorialis muscle (MOT), which is attached to the back of the head (the fixed part) and the base of the photoreceptor layer (the moving part), Burtt and Patterson (1970) established that the MOT is responsible for generating these clock-spikes (see Figure 1).


Vibrating Makes for Better Seeing: From the Fly's Micro-Eye Movements to Hyperacute Visual Sensors.

Viollet S - Front Bioeng Biotechnol (2014)

(A) Top view of a fly’s head showing the orbito-tentorialis muscle (MOT in red) attached to the back of the head (the fixed part: TT) and the base of the retina (the moving part: RET). The two spikes recorded (one generated by the nerve and one by the MOT) show that extracellular recordings can be used to record the activity of this muscle. Adapted from (Hengstenberg, 1972). (B) Head of a Calliphora vomitoria (Picture: J. J. Harrison, Wikimedia commons).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4126468&req=5

Figure 1: (A) Top view of a fly’s head showing the orbito-tentorialis muscle (MOT in red) attached to the back of the head (the fixed part: TT) and the base of the retina (the moving part: RET). The two spikes recorded (one generated by the nerve and one by the MOT) show that extracellular recordings can be used to record the activity of this muscle. Adapted from (Hengstenberg, 1972). (B) Head of a Calliphora vomitoria (Picture: J. J. Harrison, Wikimedia commons).
Mentions: In their 1965 study, Kuiper and Leutscher-Hazelhoff described what they called clock-spikes occurring in the third ganglion layer of the optic lobe (Kuiper and Leutscher-Hazelhoff, 1965). Although the firing rate was found to be very consistent (50 Hz) whatever the type of stimulus used (electric light, flash light, etc.), it increased with the temperature. As the authors thought it was unlikely that flies might be equipped with a built-in thermometer, they suggested that “clock-spikes” might provide the visual system with inputs serving to locate objects, but the insect had to be aware of its velocity and the line of sight of the ommatidium of interest. A few years later, by placing a micro-electrode (30 μm in size) in contact with a specific muscle in the blowfly’s head called the orbito-tentorialis muscle (MOT), which is attached to the back of the head (the fixed part) and the base of the photoreceptor layer (the moving part), Burtt and Patterson (1970) established that the MOT is responsible for generating these clock-spikes (see Figure 1).

Bottom Line: Several robotic platforms have been endowed with artificial visual sensors performing periodic micro-scanning movements.Artificial eyes performing these active retinal micro-movements have some extremely interesting properties, such as hyperacuity and the ability to detect very slow movements (motion hyperacuity).The fundamental role of miniature eye movements still remains to be described in detail, but several studies on natural and artificial eyes have advanced considerably toward this goal.

View Article: PubMed Central - PubMed

Affiliation: Aix-Marseille University, CNRS, ISM UMR 7287 , Marseille , France.

ABSTRACT
Active vision means that visual perception not only depends closely on the subject's own movements, but that these movements actually contribute to the visual perceptual processes. Vertebrates' and invertebrates' eye movements are probably part of an active visual process, but their exact role still remains to be determined. In this paper, studies on the retinal micro-movements occurring in the compound eye of the fly are reviewed. Several authors have located and identified the muscles involved in these small retinal movements. Others have established that these retinal micro-movements occur in walking and flying flies, but their exact functional role still remains to be determined. Many robotic studies have been performed in which animals' (flies' and spiders') miniature eye movements have been modeled, simulated, and even implemented mechanically. Several robotic platforms have been endowed with artificial visual sensors performing periodic micro-scanning movements. Artificial eyes performing these active retinal micro-movements have some extremely interesting properties, such as hyperacuity and the ability to detect very slow movements (motion hyperacuity). The fundamental role of miniature eye movements still remains to be described in detail, but several studies on natural and artificial eyes have advanced considerably toward this goal.

No MeSH data available.


Related in: MedlinePlus