Limits...
Sequential modulations of the Simon effect depend on episodic retrieval.

Spapé MM, Hommel B - Front Psychol (2014)

Bottom Line: In Experiment 2, we extend the framework to include rotations of 90(∘), and verify that the episodic effects generalize to scenarios of neutral compatibility.The experiments are argued to demonstrate that an episodic account of the conflict adaptation effect can most parsimoniously account for the behavioral effects without relying on higher order cognition.Accordingly, we conclude that conflict adaptation can be understood either as critically depending on episodic retrieval, or alternatively reflecting only episodic retrieval itself.

View Article: PubMed Central - PubMed

Affiliation: Institute for Psychological Research and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands.

ABSTRACT
Sequential modulations of conflict effects, like the reduction of the Simon effect after incompatible trials, have been taken to reflect the operation of a proactive control mechanism commonly called conflict monitoring. However, such modulations are often contaminated by episodic effects like priming and stimulus-response feature integration. It has previously been observed that if the episodic representation of a conflicting trial is altered by rotating the stimulus framing 180(∘) around its axis, the subsequent "conflict adaptation" pattern is eliminated. In Experiment 1, we replicate the findings and provide the basic episodic interpretation. In Experiment 2, we extend the framework to include rotations of 90(∘), and verify that the episodic effects generalize to scenarios of neutral compatibility. Finally, in Experiment 3, we add complete, 360(∘) rotations, and show that the episodic manipulation by itself does not eliminate the conflict adaptation patterns - as long as conditions favor episodic retrieval. The experiments are argued to demonstrate that an episodic account of the conflict adaptation effect can most parsimoniously account for the behavioral effects without relying on higher order cognition. Accordingly, we conclude that conflict adaptation can be understood either as critically depending on episodic retrieval, or alternatively reflecting only episodic retrieval itself.

No MeSH data available.


Related in: MedlinePlus

Sequence of events in five trial pairs and coding in terms of conflict (Control account) and features (Event File account). Given that the participant responds right (R) to circles and left (L) to stars, the initially compatible (c) trial (S1) in pair 2 is followed by an incompatible (I) trial (S2), which usually results in increased reaction times (RT: ++). Increased reaction times are also predictable in this scenario from an Event File perspective, as the shape is repeated (=) between trials, but not (≠) the position (Pos). This holds for trial pairs 1, 3, and 4 as well. However, divergent predictions were based on the gradual rotation as is depicted in row 5: whereas nothing changes in terms of conflict, the Event File model would predict performance gains (RT: --).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4126466&req=5

Figure 1: Sequence of events in five trial pairs and coding in terms of conflict (Control account) and features (Event File account). Given that the participant responds right (R) to circles and left (L) to stars, the initially compatible (c) trial (S1) in pair 2 is followed by an incompatible (I) trial (S2), which usually results in increased reaction times (RT: ++). Increased reaction times are also predictable in this scenario from an Event File perspective, as the shape is repeated (=) between trials, but not (≠) the position (Pos). This holds for trial pairs 1, 3, and 4 as well. However, divergent predictions were based on the gradual rotation as is depicted in row 5: whereas nothing changes in terms of conflict, the Event File model would predict performance gains (RT: --).

Mentions: Later considerations and findings have, however, raised some doubts on the interpretation of sequential conflict effects as reflecting a universal, conflict monitoring function. As pointed out by Mayr et al. (2003) and Hommel et al. (2004), sequential relationships between compatibility and incompatibility are naturally confounded with particular patterns of stimulus and response repetitions and alternations. Approximately half a century of research on the effect of priming shows that simply repeating a stimulus or response markedly affects reaction times (Bertelson, 1963; Meyer and Schvaneveldt, 1971) and during sequence modulations, such effects are always present. Given that the combinations of stimulus and response repetitions are not equally distributed across the possible transitions between compatibility conditions, it is possible that at least some sequential modulation effects are due to feature – rather than conflict – repetition (Mayr et al., 2003; see also Figure 1 row 1).


Sequential modulations of the Simon effect depend on episodic retrieval.

Spapé MM, Hommel B - Front Psychol (2014)

Sequence of events in five trial pairs and coding in terms of conflict (Control account) and features (Event File account). Given that the participant responds right (R) to circles and left (L) to stars, the initially compatible (c) trial (S1) in pair 2 is followed by an incompatible (I) trial (S2), which usually results in increased reaction times (RT: ++). Increased reaction times are also predictable in this scenario from an Event File perspective, as the shape is repeated (=) between trials, but not (≠) the position (Pos). This holds for trial pairs 1, 3, and 4 as well. However, divergent predictions were based on the gradual rotation as is depicted in row 5: whereas nothing changes in terms of conflict, the Event File model would predict performance gains (RT: --).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4126466&req=5

Figure 1: Sequence of events in five trial pairs and coding in terms of conflict (Control account) and features (Event File account). Given that the participant responds right (R) to circles and left (L) to stars, the initially compatible (c) trial (S1) in pair 2 is followed by an incompatible (I) trial (S2), which usually results in increased reaction times (RT: ++). Increased reaction times are also predictable in this scenario from an Event File perspective, as the shape is repeated (=) between trials, but not (≠) the position (Pos). This holds for trial pairs 1, 3, and 4 as well. However, divergent predictions were based on the gradual rotation as is depicted in row 5: whereas nothing changes in terms of conflict, the Event File model would predict performance gains (RT: --).
Mentions: Later considerations and findings have, however, raised some doubts on the interpretation of sequential conflict effects as reflecting a universal, conflict monitoring function. As pointed out by Mayr et al. (2003) and Hommel et al. (2004), sequential relationships between compatibility and incompatibility are naturally confounded with particular patterns of stimulus and response repetitions and alternations. Approximately half a century of research on the effect of priming shows that simply repeating a stimulus or response markedly affects reaction times (Bertelson, 1963; Meyer and Schvaneveldt, 1971) and during sequence modulations, such effects are always present. Given that the combinations of stimulus and response repetitions are not equally distributed across the possible transitions between compatibility conditions, it is possible that at least some sequential modulation effects are due to feature – rather than conflict – repetition (Mayr et al., 2003; see also Figure 1 row 1).

Bottom Line: In Experiment 2, we extend the framework to include rotations of 90(∘), and verify that the episodic effects generalize to scenarios of neutral compatibility.The experiments are argued to demonstrate that an episodic account of the conflict adaptation effect can most parsimoniously account for the behavioral effects without relying on higher order cognition.Accordingly, we conclude that conflict adaptation can be understood either as critically depending on episodic retrieval, or alternatively reflecting only episodic retrieval itself.

View Article: PubMed Central - PubMed

Affiliation: Institute for Psychological Research and Leiden Institute for Brain and Cognition, Leiden University Leiden, Netherlands.

ABSTRACT
Sequential modulations of conflict effects, like the reduction of the Simon effect after incompatible trials, have been taken to reflect the operation of a proactive control mechanism commonly called conflict monitoring. However, such modulations are often contaminated by episodic effects like priming and stimulus-response feature integration. It has previously been observed that if the episodic representation of a conflicting trial is altered by rotating the stimulus framing 180(∘) around its axis, the subsequent "conflict adaptation" pattern is eliminated. In Experiment 1, we replicate the findings and provide the basic episodic interpretation. In Experiment 2, we extend the framework to include rotations of 90(∘), and verify that the episodic effects generalize to scenarios of neutral compatibility. Finally, in Experiment 3, we add complete, 360(∘) rotations, and show that the episodic manipulation by itself does not eliminate the conflict adaptation patterns - as long as conditions favor episodic retrieval. The experiments are argued to demonstrate that an episodic account of the conflict adaptation effect can most parsimoniously account for the behavioral effects without relying on higher order cognition. Accordingly, we conclude that conflict adaptation can be understood either as critically depending on episodic retrieval, or alternatively reflecting only episodic retrieval itself.

No MeSH data available.


Related in: MedlinePlus