Limits...
Recombinant production of plant lectins in microbial systems for biomedical application - the frutalin case study.

Oliveira C, Teixeira JA, Domingues L - Front Plant Sci (2014)

Bottom Line: The main problem of using such lectins as biomedical tools is that "batch-to-batch" variation in isoforms content may lead to inconstant results.The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit.Recombinant frutalin production opens perspectives for its development as a new tool in human medicine.

View Article: PubMed Central - PubMed

Affiliation: Centre of Biological Engineering, University of Minho Braga, Portugal.

ABSTRACT
Frutalin is a homotetrameric partly glycosylated α-D-galactose-binding lectin of biomedical interest from Artocarpus incisa (breadfruit) seeds, belonging to the jacalin-related lectins family. As other plant lectins, frutalin is a heterogeneous mixture of several isoforms possibly with distinct biological activities. The main problem of using such lectins as biomedical tools is that "batch-to-batch" variation in isoforms content may lead to inconstant results. The production of lectins by recombinant means has the advantage of obtaining high amounts of proteins with defined amino-acid sequences and more precise properties. In this mini review, we provide the strategies followed to produce two different forms of frutalin in two different microbial systems: Escherichia coli and Pichia pastoris. The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit. Emphasis is given particularly to recombinant frutalin produced in P. pastoris, which showed a remarkable capacity as biomarker of human prostate cancer and as apoptosis-inducer of cancer cells. Recombinant frutalin production opens perspectives for its development as a new tool in human medicine.

No MeSH data available.


Related in: MedlinePlus

Immunostaining pictures of a prostate cancer tissue using recombinant FTL produced in P. pastoris as tumor diagnostic marker. PprFTL was able to specifically recognize carcinoma cells in middle of a benign lesion. The staining is localized in the cells cytoplasm of the carcinoma glands (brown color). (Original publisher: BioMed Central; Adapted from Oliveira et al., 2009b).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4126444&req=5

Figure 2: Immunostaining pictures of a prostate cancer tissue using recombinant FTL produced in P. pastoris as tumor diagnostic marker. PprFTL was able to specifically recognize carcinoma cells in middle of a benign lesion. The staining is localized in the cells cytoplasm of the carcinoma glands (brown color). (Original publisher: BioMed Central; Adapted from Oliveira et al., 2009b).

Mentions: The relevance of JRLs, specifically jacalin, for cancer diagnostics and therapeutics is present in many recent works (e.g., Obaid et al., 2012; Lee et al., 2013; Marangoni et al., 2013; Zupancic et al., 2014). PprFTL was evaluated in terms of its tumor biomarker and anti-tumor properties, comparatively to FTL (Oliveira et al., 2009b, 2011). The cancer biomarker study was performed by immunohistochemistry with human prostate tissues (Oliveira et al., 2009b). Other plant lectins were used in the past in similar studies but with limited success (works cited in Oliveira et al., 2009b). The binding pattern of PprFTL and FTL to the prostate tissues was distinct, presumably due to their differences in carbohydrate-binding affinity (Oliveira et al., 2008). FTL bound to any type of prostate cells but more strongly to the neoplasic (malignant cells) than to the hyperplasic ones (non-malignant cells). On the other hand, PprFTL was much more specific, as it just recognized malignant cells (Figure 2). A significant positive statistical correlation between the binding intensity of PprFTL and the histological diagnosis of the tissues was obtained (not observed for FTL), although PprFTL did not recognize all the malignant cases studied (30% had negative binding), and when positive, the binding was heterogeneous. However, only a small number of prostate cases were analyzed and the histochemical methodology has still room for improvement. This study indicates that PprFTL has higher potential as cancer biomarker than FTL.


Recombinant production of plant lectins in microbial systems for biomedical application - the frutalin case study.

Oliveira C, Teixeira JA, Domingues L - Front Plant Sci (2014)

Immunostaining pictures of a prostate cancer tissue using recombinant FTL produced in P. pastoris as tumor diagnostic marker. PprFTL was able to specifically recognize carcinoma cells in middle of a benign lesion. The staining is localized in the cells cytoplasm of the carcinoma glands (brown color). (Original publisher: BioMed Central; Adapted from Oliveira et al., 2009b).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4126444&req=5

Figure 2: Immunostaining pictures of a prostate cancer tissue using recombinant FTL produced in P. pastoris as tumor diagnostic marker. PprFTL was able to specifically recognize carcinoma cells in middle of a benign lesion. The staining is localized in the cells cytoplasm of the carcinoma glands (brown color). (Original publisher: BioMed Central; Adapted from Oliveira et al., 2009b).
Mentions: The relevance of JRLs, specifically jacalin, for cancer diagnostics and therapeutics is present in many recent works (e.g., Obaid et al., 2012; Lee et al., 2013; Marangoni et al., 2013; Zupancic et al., 2014). PprFTL was evaluated in terms of its tumor biomarker and anti-tumor properties, comparatively to FTL (Oliveira et al., 2009b, 2011). The cancer biomarker study was performed by immunohistochemistry with human prostate tissues (Oliveira et al., 2009b). Other plant lectins were used in the past in similar studies but with limited success (works cited in Oliveira et al., 2009b). The binding pattern of PprFTL and FTL to the prostate tissues was distinct, presumably due to their differences in carbohydrate-binding affinity (Oliveira et al., 2008). FTL bound to any type of prostate cells but more strongly to the neoplasic (malignant cells) than to the hyperplasic ones (non-malignant cells). On the other hand, PprFTL was much more specific, as it just recognized malignant cells (Figure 2). A significant positive statistical correlation between the binding intensity of PprFTL and the histological diagnosis of the tissues was obtained (not observed for FTL), although PprFTL did not recognize all the malignant cases studied (30% had negative binding), and when positive, the binding was heterogeneous. However, only a small number of prostate cases were analyzed and the histochemical methodology has still room for improvement. This study indicates that PprFTL has higher potential as cancer biomarker than FTL.

Bottom Line: The main problem of using such lectins as biomedical tools is that "batch-to-batch" variation in isoforms content may lead to inconstant results.The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit.Recombinant frutalin production opens perspectives for its development as a new tool in human medicine.

View Article: PubMed Central - PubMed

Affiliation: Centre of Biological Engineering, University of Minho Braga, Portugal.

ABSTRACT
Frutalin is a homotetrameric partly glycosylated α-D-galactose-binding lectin of biomedical interest from Artocarpus incisa (breadfruit) seeds, belonging to the jacalin-related lectins family. As other plant lectins, frutalin is a heterogeneous mixture of several isoforms possibly with distinct biological activities. The main problem of using such lectins as biomedical tools is that "batch-to-batch" variation in isoforms content may lead to inconstant results. The production of lectins by recombinant means has the advantage of obtaining high amounts of proteins with defined amino-acid sequences and more precise properties. In this mini review, we provide the strategies followed to produce two different forms of frutalin in two different microbial systems: Escherichia coli and Pichia pastoris. The processing and functional properties of the recombinant frutalin obtained from these hosts are compared to those of frutalin extracted from breadfruit. Emphasis is given particularly to recombinant frutalin produced in P. pastoris, which showed a remarkable capacity as biomarker of human prostate cancer and as apoptosis-inducer of cancer cells. Recombinant frutalin production opens perspectives for its development as a new tool in human medicine.

No MeSH data available.


Related in: MedlinePlus