Limits...
Diffusion-weighted MRI characteristics of the cerebral metastasis to brain boundary predicts patient outcomes.

Zakaria R, Das K, Radon M, Bhojak M, Rudland PR, Sluming V, Jenkinson MD - BMC Med Imaging (2014)

Bottom Line: Patient outcomes were overall survival and time to local recurrence.This was not simply due to differences between the types of primary cancer because the effect was observed even in a subgroup of 36 patients with the same primary, non-small cell lung cancer.The ATC was the only imaging measurement which independently predicted overall survival in multivariate analysis (hazard ratio 0.54, 95% CI 0.3 - 0.97, p = 0.04).

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK. rzakaria@nhs.net.

ABSTRACT

Background: Diffusion-weighted MRI (DWI) has been used in neurosurgical practice mainly to distinguish cerebral metastases from abscess and glioma. There is evidence from other solid organ cancers and metastases that DWI may be used as a biomarker of prognosis and treatment response. We therefore investigated DWI characteristics of cerebral metastases and their peritumoral region recorded pre-operatively and related these to patient outcomes.

Methods: Retrospective analysis of 76 cases operated upon at a single institution with DWI performed pre-operatively at 1.5T. Maps of apparent diffusion coefficient (ADC) were generated using standard protocols. Readings were taken from the tumor, peritumoral region and across the brain-tumor interface. Patient outcomes were overall survival and time to local recurrence.

Results: A minimum ADC greater than 919.4 × 10(-6) mm(2)/s within a metastasis predicted longer overall survival regardless of adjuvant therapies. This was not simply due to differences between the types of primary cancer because the effect was observed even in a subgroup of 36 patients with the same primary, non-small cell lung cancer. The change in diffusion across the tumor border and into peritumoral brain was measured by the "ADC transition coefficient" or ATC and this was more strongly predictive than ADC readings alone. Metastases with a sharp change in diffusion across their border (ATC >0.279) showed shorter overall survival compared to those with a more diffuse edge. The ATC was the only imaging measurement which independently predicted overall survival in multivariate analysis (hazard ratio 0.54, 95% CI 0.3 - 0.97, p = 0.04).

Conclusions: DWI demonstrates changes in the tumor, across the tumor edge and in the peritumoral region which may not be visible on conventional MRI and this may be useful in predicting patient outcomes for operated cerebral metastases.

Show MeSH

Related in: MedlinePlus

Analysing the brain-metastasis interface. Metastases could be stratified by the sharpness of the tumor border on ADC maps. Panel A. demonstrates a lesion with a high ATC or “ADC transition coefficient” implying a sharp border. This type of metastasis tended to have a high cellularity (H & E section x200). Panel B. demonstrates a case which looks superficially similar on postcontrast T1-weighted sequence but actually has a much more diffuse border on the ADC map and hence a low ATC, with lower cellularity. C. These metastases differ in their outcomes and the cases with a high ATC (> median) and therefore a sharp boundary had a shorter overall survival 6.8 months (95% CI 5.3 – 8.4) as compared to those with a low ATC and hence diffuse boundary (11.2 months, 95% CI 8.3 – 14.0, Log rank Chi-Square = 4.19, p = 0.041). This effect was significant even in multivariate analysis incorporating traditional clinical predictors.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4126355&req=5

Figure 5: Analysing the brain-metastasis interface. Metastases could be stratified by the sharpness of the tumor border on ADC maps. Panel A. demonstrates a lesion with a high ATC or “ADC transition coefficient” implying a sharp border. This type of metastasis tended to have a high cellularity (H & E section x200). Panel B. demonstrates a case which looks superficially similar on postcontrast T1-weighted sequence but actually has a much more diffuse border on the ADC map and hence a low ATC, with lower cellularity. C. These metastases differ in their outcomes and the cases with a high ATC (> median) and therefore a sharp boundary had a shorter overall survival 6.8 months (95% CI 5.3 – 8.4) as compared to those with a low ATC and hence diffuse boundary (11.2 months, 95% CI 8.3 – 14.0, Log rank Chi-Square = 4.19, p = 0.041). This effect was significant even in multivariate analysis incorporating traditional clinical predictors.

Mentions: The group was divided into two based on the ATC, and those patients with a metastasis showing high ATC (> median) and therefore a sharp boundary on the ADC map had a shorter overall survival 6.8 months (95% CI 5.3 – 8.4) as compared to those with a low ATC and hence diffuse boundary on ADC map (11.2 months, 95% CI 8.3 – 14.0, Log rank Chi-Square = 4.19, p = 0.041). This is illustrated more clearly in the conventional MRI scans and accompanying ADC maps in Figure 5. There was also a tendency to earlier local recurrence in high ATC cases versus low ATC but this was not statistically significant (shown in Table 2).


Diffusion-weighted MRI characteristics of the cerebral metastasis to brain boundary predicts patient outcomes.

Zakaria R, Das K, Radon M, Bhojak M, Rudland PR, Sluming V, Jenkinson MD - BMC Med Imaging (2014)

Analysing the brain-metastasis interface. Metastases could be stratified by the sharpness of the tumor border on ADC maps. Panel A. demonstrates a lesion with a high ATC or “ADC transition coefficient” implying a sharp border. This type of metastasis tended to have a high cellularity (H & E section x200). Panel B. demonstrates a case which looks superficially similar on postcontrast T1-weighted sequence but actually has a much more diffuse border on the ADC map and hence a low ATC, with lower cellularity. C. These metastases differ in their outcomes and the cases with a high ATC (> median) and therefore a sharp boundary had a shorter overall survival 6.8 months (95% CI 5.3 – 8.4) as compared to those with a low ATC and hence diffuse boundary (11.2 months, 95% CI 8.3 – 14.0, Log rank Chi-Square = 4.19, p = 0.041). This effect was significant even in multivariate analysis incorporating traditional clinical predictors.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4126355&req=5

Figure 5: Analysing the brain-metastasis interface. Metastases could be stratified by the sharpness of the tumor border on ADC maps. Panel A. demonstrates a lesion with a high ATC or “ADC transition coefficient” implying a sharp border. This type of metastasis tended to have a high cellularity (H & E section x200). Panel B. demonstrates a case which looks superficially similar on postcontrast T1-weighted sequence but actually has a much more diffuse border on the ADC map and hence a low ATC, with lower cellularity. C. These metastases differ in their outcomes and the cases with a high ATC (> median) and therefore a sharp boundary had a shorter overall survival 6.8 months (95% CI 5.3 – 8.4) as compared to those with a low ATC and hence diffuse boundary (11.2 months, 95% CI 8.3 – 14.0, Log rank Chi-Square = 4.19, p = 0.041). This effect was significant even in multivariate analysis incorporating traditional clinical predictors.
Mentions: The group was divided into two based on the ATC, and those patients with a metastasis showing high ATC (> median) and therefore a sharp boundary on the ADC map had a shorter overall survival 6.8 months (95% CI 5.3 – 8.4) as compared to those with a low ATC and hence diffuse boundary on ADC map (11.2 months, 95% CI 8.3 – 14.0, Log rank Chi-Square = 4.19, p = 0.041). This is illustrated more clearly in the conventional MRI scans and accompanying ADC maps in Figure 5. There was also a tendency to earlier local recurrence in high ATC cases versus low ATC but this was not statistically significant (shown in Table 2).

Bottom Line: Patient outcomes were overall survival and time to local recurrence.This was not simply due to differences between the types of primary cancer because the effect was observed even in a subgroup of 36 patients with the same primary, non-small cell lung cancer.The ATC was the only imaging measurement which independently predicted overall survival in multivariate analysis (hazard ratio 0.54, 95% CI 0.3 - 0.97, p = 0.04).

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Neurosurgery, The Walton Centre NHS Foundation Trust, Liverpool, UK. rzakaria@nhs.net.

ABSTRACT

Background: Diffusion-weighted MRI (DWI) has been used in neurosurgical practice mainly to distinguish cerebral metastases from abscess and glioma. There is evidence from other solid organ cancers and metastases that DWI may be used as a biomarker of prognosis and treatment response. We therefore investigated DWI characteristics of cerebral metastases and their peritumoral region recorded pre-operatively and related these to patient outcomes.

Methods: Retrospective analysis of 76 cases operated upon at a single institution with DWI performed pre-operatively at 1.5T. Maps of apparent diffusion coefficient (ADC) were generated using standard protocols. Readings were taken from the tumor, peritumoral region and across the brain-tumor interface. Patient outcomes were overall survival and time to local recurrence.

Results: A minimum ADC greater than 919.4 × 10(-6) mm(2)/s within a metastasis predicted longer overall survival regardless of adjuvant therapies. This was not simply due to differences between the types of primary cancer because the effect was observed even in a subgroup of 36 patients with the same primary, non-small cell lung cancer. The change in diffusion across the tumor border and into peritumoral brain was measured by the "ADC transition coefficient" or ATC and this was more strongly predictive than ADC readings alone. Metastases with a sharp change in diffusion across their border (ATC >0.279) showed shorter overall survival compared to those with a more diffuse edge. The ATC was the only imaging measurement which independently predicted overall survival in multivariate analysis (hazard ratio 0.54, 95% CI 0.3 - 0.97, p = 0.04).

Conclusions: DWI demonstrates changes in the tumor, across the tumor edge and in the peritumoral region which may not be visible on conventional MRI and this may be useful in predicting patient outcomes for operated cerebral metastases.

Show MeSH
Related in: MedlinePlus