Limits...
Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library.

Feng J, Wang T, Shi W, Zhang S, Sullivan D, Auwaerter PG, Zhang Y - Emerg Microbes Infect (2014)

Bottom Line: The top 27 drug candidates from the 165 hits were confirmed to have higher anti-persister activity than the current frontline antibiotics.Among the top 27 confirmed drug candidates from the 165 hits, daptomycin, clofazimine, carbomycin, sulfa drugs (e.g., sulfamethoxazole), and certain cephalosporins (e.g. cefoperazone) had the highest anti-persister activity.Our findings may have implications for the development of a more effective treatment for Lyme disease and for the relief of long-term symptoms that afflict some Lyme disease patients.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University , Baltimore, MD 21205, USA.

ABSTRACT
Although antibiotic treatment for Lyme disease is effective in the majority of cases, especially during the early phase of the disease, a minority of patients suffer from post-treatment Lyme disease syndrome (PTLDS). It is unclear what mechanisms drive this problem, and although slow or ineffective killing of Borrelia burgdorferi has been suggested as an explanation, there is a lack of evidence that viable organisms are present in PTLDS. Although not a clinical surrogate, insight may be gained by examining stationary-phase in vitro Borrelia burgdorferi persisters that survive treatment with the antibiotics doxycycline and amoxicillin. To identify drug candidates that can eliminate B. burgdorferi persisters more effectively, we screened an Food and Drug Administration (FDA)-approved drug library consisting of 1524 compounds against stationary-phase B. burgdorferi by using a newly developed high throughput SYBR Green I/propidium iodide (PI) assay. We identified 165 agents approved for use in other disease conditions that had more activity than doxycycline and amoxicillin against B. burgdorferi persisters. The top 27 drug candidates from the 165 hits were confirmed to have higher anti-persister activity than the current frontline antibiotics. Among the top 27 confirmed drug candidates from the 165 hits, daptomycin, clofazimine, carbomycin, sulfa drugs (e.g., sulfamethoxazole), and certain cephalosporins (e.g. cefoperazone) had the highest anti-persister activity. In addition, some drug candidates, such as daptomycin and clofazimine (which had the highest activity against non-growing persisters), had relatively poor activity or a high minimal inhibitory concentration (MIC) against growing B. burgdorferi. Our findings may have implications for the development of a more effective treatment for Lyme disease and for the relief of long-term symptoms that afflict some Lyme disease patients.

No MeSH data available.


Related in: MedlinePlus

(A) Growth curve of B. burgdorferi strain B31 in vitro. (B) Representative images of the log phase (3-day culture) and stationary phase of B. burgdorferi B31 strain (7-day culture), observed with fluorescent microscopy using the SYBR Green I/PI stain (×400 magnification). The arrows indicate multiple morphological forms of B. burgdorferi in stationary phase.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4126181&req=5

fig1: (A) Growth curve of B. burgdorferi strain B31 in vitro. (B) Representative images of the log phase (3-day culture) and stationary phase of B. burgdorferi B31 strain (7-day culture), observed with fluorescent microscopy using the SYBR Green I/PI stain (×400 magnification). The arrows indicate multiple morphological forms of B. burgdorferi in stationary phase.

Mentions: Borrelia burgdorferi strain B31 (ATCC 35210) was obtained from the American Type Tissue Collection (Manassas, VA, USA). B. burgdorferi was cultured in BSK-H medium (HiMedia Laboratories Pvt. Ltd., Mumbai, India) with 6% rabbit serum (Sigma-Aldrich, St. Louis, MO, USA). All culture media were filter-sterilized using a 0.2 µm filter. Cultures were incubated in sterile 50 mL closed conical tubes (BD Biosciences, CA, USA) at 33 °C without antibiotics. After 6–7 days, the B. burgdorferi reached stationary phase in the culture system (Figure 1A). Then, 7-day-old stationary-phase B. burgdorferi cultures were transferred to 96-well tissue culture microplates for drug screening.


Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library.

Feng J, Wang T, Shi W, Zhang S, Sullivan D, Auwaerter PG, Zhang Y - Emerg Microbes Infect (2014)

(A) Growth curve of B. burgdorferi strain B31 in vitro. (B) Representative images of the log phase (3-day culture) and stationary phase of B. burgdorferi B31 strain (7-day culture), observed with fluorescent microscopy using the SYBR Green I/PI stain (×400 magnification). The arrows indicate multiple morphological forms of B. burgdorferi in stationary phase.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4126181&req=5

fig1: (A) Growth curve of B. burgdorferi strain B31 in vitro. (B) Representative images of the log phase (3-day culture) and stationary phase of B. burgdorferi B31 strain (7-day culture), observed with fluorescent microscopy using the SYBR Green I/PI stain (×400 magnification). The arrows indicate multiple morphological forms of B. burgdorferi in stationary phase.
Mentions: Borrelia burgdorferi strain B31 (ATCC 35210) was obtained from the American Type Tissue Collection (Manassas, VA, USA). B. burgdorferi was cultured in BSK-H medium (HiMedia Laboratories Pvt. Ltd., Mumbai, India) with 6% rabbit serum (Sigma-Aldrich, St. Louis, MO, USA). All culture media were filter-sterilized using a 0.2 µm filter. Cultures were incubated in sterile 50 mL closed conical tubes (BD Biosciences, CA, USA) at 33 °C without antibiotics. After 6–7 days, the B. burgdorferi reached stationary phase in the culture system (Figure 1A). Then, 7-day-old stationary-phase B. burgdorferi cultures were transferred to 96-well tissue culture microplates for drug screening.

Bottom Line: The top 27 drug candidates from the 165 hits were confirmed to have higher anti-persister activity than the current frontline antibiotics.Among the top 27 confirmed drug candidates from the 165 hits, daptomycin, clofazimine, carbomycin, sulfa drugs (e.g., sulfamethoxazole), and certain cephalosporins (e.g. cefoperazone) had the highest anti-persister activity.Our findings may have implications for the development of a more effective treatment for Lyme disease and for the relief of long-term symptoms that afflict some Lyme disease patients.

View Article: PubMed Central - PubMed

Affiliation: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University , Baltimore, MD 21205, USA.

ABSTRACT
Although antibiotic treatment for Lyme disease is effective in the majority of cases, especially during the early phase of the disease, a minority of patients suffer from post-treatment Lyme disease syndrome (PTLDS). It is unclear what mechanisms drive this problem, and although slow or ineffective killing of Borrelia burgdorferi has been suggested as an explanation, there is a lack of evidence that viable organisms are present in PTLDS. Although not a clinical surrogate, insight may be gained by examining stationary-phase in vitro Borrelia burgdorferi persisters that survive treatment with the antibiotics doxycycline and amoxicillin. To identify drug candidates that can eliminate B. burgdorferi persisters more effectively, we screened an Food and Drug Administration (FDA)-approved drug library consisting of 1524 compounds against stationary-phase B. burgdorferi by using a newly developed high throughput SYBR Green I/propidium iodide (PI) assay. We identified 165 agents approved for use in other disease conditions that had more activity than doxycycline and amoxicillin against B. burgdorferi persisters. The top 27 drug candidates from the 165 hits were confirmed to have higher anti-persister activity than the current frontline antibiotics. Among the top 27 confirmed drug candidates from the 165 hits, daptomycin, clofazimine, carbomycin, sulfa drugs (e.g., sulfamethoxazole), and certain cephalosporins (e.g. cefoperazone) had the highest anti-persister activity. In addition, some drug candidates, such as daptomycin and clofazimine (which had the highest activity against non-growing persisters), had relatively poor activity or a high minimal inhibitory concentration (MIC) against growing B. burgdorferi. Our findings may have implications for the development of a more effective treatment for Lyme disease and for the relief of long-term symptoms that afflict some Lyme disease patients.

No MeSH data available.


Related in: MedlinePlus