Limits...
Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis.

Luerce TD, Gomes-Santos AC, Rocha CS, Moreira TG, Cruz DN, Lemos L, Sousa AL, Pereira VB, de Azevedo M, Moraes K, Cara DC, LeBlanc JG, Azevedo V, Faria AM, Miyoshi A - Gut Pathog (2014)

Bottom Line: Only one strain, L. lactis NCDO 2118, was able to reduce IL-1β-induced IL-8 secretion in Caco-2 cells, suggesting a potential anti-inflammatory effect.This protective effect was not attributable to changes in secretory IgA (sIgA); however, NCDO 2118 administration was associated with an early increase in IL-6 production and sustained IL-10 production in colonic tissue.Here, we identified a new probiotic strain with a potential role in the treatment of IBD, and we elucidated some of the mechanisms underlying its anti-inflammatory effect.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - 31270-901 Belo Horizonte, MG, Brazil.

ABSTRACT

Background: Many probiotic bacteria have been described as promising tools for the treatment and prevention of inflammatory bowel diseases (IBDs). Most of these bacteria are lactic acid bacteria, which are part of the healthy human microbiota. However, little is known about the effects of transient bacteria present in normal diets, including Lactococcus lactis.

Methods: In the present study, we analysed the immunomodulatory effects of three L. lactis strains in vitro using intestinal epithelial cells. L. lactis NCDO 2118 was administered for 4 days to C57BL/6 mice during the remission period of colitis induced by dextran sodium sulphate (DSS).

Results: Only one strain, L. lactis NCDO 2118, was able to reduce IL-1β-induced IL-8 secretion in Caco-2 cells, suggesting a potential anti-inflammatory effect. Oral treatment using L. lactis NCDO 2118 resulted in a milder form of recurrent colitis than that observed in control diseased mice. This protective effect was not attributable to changes in secretory IgA (sIgA); however, NCDO 2118 administration was associated with an early increase in IL-6 production and sustained IL-10 production in colonic tissue. Mice fed L. lactis NCDO 2118 had an increased number of regulatory CD4(+) T cells (Tregs) bearing surface TGF-β in its latent form (Latency-associated peptide-LAP) in the mesenteric lymph nodes and spleen.

Conclusions: Here, we identified a new probiotic strain with a potential role in the treatment of IBD, and we elucidated some of the mechanisms underlying its anti-inflammatory effect.

No MeSH data available.


Related in: MedlinePlus

IL-8 levels after co-incubation of L. lactis strains with Caco-2 cells. (A)L. lactis cells. (B)L. lactis supernatant. Dash, without addition of IL-1β or bacteria; IL-1β, only IL-1β was added; GM17, only the medium was added. Bars represent the mean and the MSE of three independent experiments. *, p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4126083&req=5

Figure 1: IL-8 levels after co-incubation of L. lactis strains with Caco-2 cells. (A)L. lactis cells. (B)L. lactis supernatant. Dash, without addition of IL-1β or bacteria; IL-1β, only IL-1β was added; GM17, only the medium was added. Bars represent the mean and the MSE of three independent experiments. *, p < 0.05.

Mentions: None of the tested L. lactis strains induced IL-8 secretion above background levels, indicating that they do not induce inflammatory events in IECs (Figure 1A and B). To investigate whether L. lactis has an anti-inflammatory effect on IECs, the ability of the strains to block IL-8 secretion induced by IL-1β was analysed. Caco-2 cells secreted baseline levels of IL-8, which increased after stimulation with IL-1β. None of the live cell fractions were able to reduce IL-1β-induced IL-8 secretion (Figure 1A); however, the supernatant of NCDO 2118 cultures reduced the production of IL-8 by 45% (Figure 1B), whereas the other 2 supernatants did not show similar effects. Thus, the anti-inflammatory role of L. lactis in vitro is strain-dependent.


Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis.

Luerce TD, Gomes-Santos AC, Rocha CS, Moreira TG, Cruz DN, Lemos L, Sousa AL, Pereira VB, de Azevedo M, Moraes K, Cara DC, LeBlanc JG, Azevedo V, Faria AM, Miyoshi A - Gut Pathog (2014)

IL-8 levels after co-incubation of L. lactis strains with Caco-2 cells. (A)L. lactis cells. (B)L. lactis supernatant. Dash, without addition of IL-1β or bacteria; IL-1β, only IL-1β was added; GM17, only the medium was added. Bars represent the mean and the MSE of three independent experiments. *, p < 0.05.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4126083&req=5

Figure 1: IL-8 levels after co-incubation of L. lactis strains with Caco-2 cells. (A)L. lactis cells. (B)L. lactis supernatant. Dash, without addition of IL-1β or bacteria; IL-1β, only IL-1β was added; GM17, only the medium was added. Bars represent the mean and the MSE of three independent experiments. *, p < 0.05.
Mentions: None of the tested L. lactis strains induced IL-8 secretion above background levels, indicating that they do not induce inflammatory events in IECs (Figure 1A and B). To investigate whether L. lactis has an anti-inflammatory effect on IECs, the ability of the strains to block IL-8 secretion induced by IL-1β was analysed. Caco-2 cells secreted baseline levels of IL-8, which increased after stimulation with IL-1β. None of the live cell fractions were able to reduce IL-1β-induced IL-8 secretion (Figure 1A); however, the supernatant of NCDO 2118 cultures reduced the production of IL-8 by 45% (Figure 1B), whereas the other 2 supernatants did not show similar effects. Thus, the anti-inflammatory role of L. lactis in vitro is strain-dependent.

Bottom Line: Only one strain, L. lactis NCDO 2118, was able to reduce IL-1β-induced IL-8 secretion in Caco-2 cells, suggesting a potential anti-inflammatory effect.This protective effect was not attributable to changes in secretory IgA (sIgA); however, NCDO 2118 administration was associated with an early increase in IL-6 production and sustained IL-10 production in colonic tissue.Here, we identified a new probiotic strain with a potential role in the treatment of IBD, and we elucidated some of the mechanisms underlying its anti-inflammatory effect.

View Article: PubMed Central - HTML - PubMed

Affiliation: Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - 31270-901 Belo Horizonte, MG, Brazil.

ABSTRACT

Background: Many probiotic bacteria have been described as promising tools for the treatment and prevention of inflammatory bowel diseases (IBDs). Most of these bacteria are lactic acid bacteria, which are part of the healthy human microbiota. However, little is known about the effects of transient bacteria present in normal diets, including Lactococcus lactis.

Methods: In the present study, we analysed the immunomodulatory effects of three L. lactis strains in vitro using intestinal epithelial cells. L. lactis NCDO 2118 was administered for 4 days to C57BL/6 mice during the remission period of colitis induced by dextran sodium sulphate (DSS).

Results: Only one strain, L. lactis NCDO 2118, was able to reduce IL-1β-induced IL-8 secretion in Caco-2 cells, suggesting a potential anti-inflammatory effect. Oral treatment using L. lactis NCDO 2118 resulted in a milder form of recurrent colitis than that observed in control diseased mice. This protective effect was not attributable to changes in secretory IgA (sIgA); however, NCDO 2118 administration was associated with an early increase in IL-6 production and sustained IL-10 production in colonic tissue. Mice fed L. lactis NCDO 2118 had an increased number of regulatory CD4(+) T cells (Tregs) bearing surface TGF-β in its latent form (Latency-associated peptide-LAP) in the mesenteric lymph nodes and spleen.

Conclusions: Here, we identified a new probiotic strain with a potential role in the treatment of IBD, and we elucidated some of the mechanisms underlying its anti-inflammatory effect.

No MeSH data available.


Related in: MedlinePlus