Limits...
Weight loss herbal intervention therapy (W-LHIT) a non-appetite suppressing natural product controls weight and lowers cholesterol and glucose levels in a murine model.

Yang N, Chung D, Liu C, Liang B, Li XM - BMC Complement Altern Med (2014)

Bottom Line: In addition, significantly increased PPARγ (peroxisome proliferator activated receptor γ) and FABP4 (fatty acid binding protein 4) gene expression were found in epdidymal fat tissues.Liver and kidney function and hematology testing results of W-LHIT treated mice were within the normal range.W-LHIT significantly and safely reduced body weight, normalized glucose and cholesterol levels in obese mice, without suppression of appetite, and increased adipocyte PPARγ and FABP4 gene expression.

View Article: PubMed Central - PubMed

Affiliation: Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. xiu-min.li@mssm.edu.

ABSTRACT

Background: The prevalence of obesity is increasing in industrialized countries. Obesity increases the risk of coronary artery disease, stroke, cancer, hypertension, and type-2 diabetes. Unfortunately, conventional obesity drug treatment is often associated with adverse effects. The objective of this study was to evaluate a novel natural formula, Weight loss herbal intervention therapy (W-LHIT), developed from traditional Chinese medicine, for weight control in a high-fat-diet (HFD) induced obesity murine model.

Methods: Two sets of experiments were performed. In experiment 1, 14-week-old C57BL/6 J male mice were fed with HFD for 21 days and then separated into 3 weight-matched groups. One group continued on the HFD as obese-controls. Two groups were switched from HFD to normal fat level diet (NFD) and sham or W-LHIT treated. In experiment 2, 25-week-old obese mice, following 2 weeks acclimatization, received either W-LHIT or sham treatment while maintained on HFD. In both sets of experiments, NFD fed, age matched normal weight mice served as normal controls. Body weight and food intake were recorded. Epididymal fat pad weight, serum glucose and cholesterol levels, as well as PPARγ and FABP4 gene expression in epididymal fat tissue were analyzed at the end of the experiment.

Results: In experiment 1, W-LHIT treated obese mice lost body weight 12.2 ± 3.8% whereas sham treated mice lost 5.5 ± 2.8% by day 10 after switching from the HFD to the NFD, without reduction of chow consumption. In experiment 2, W-LHIT treated obese mice maintained on the HFD had significantly lower body weight (8 fold less) than the sham treated mice. W-LHIT treatment also reduced epididymal fat pad weight, blood cholesterol and glucose levels versus sham treated mice without reduced chow consumption. In addition, significantly increased PPARγ (peroxisome proliferator activated receptor γ) and FABP4 (fatty acid binding protein 4) gene expression were found in epdidymal fat tissues. Liver and kidney function and hematology testing results of W-LHIT treated mice were within the normal range.

Conclusions: W-LHIT significantly and safely reduced body weight, normalized glucose and cholesterol levels in obese mice, without suppression of appetite, and increased adipocyte PPARγ and FABP4 gene expression.

Show MeSH

Related in: MedlinePlus

HPLC fingerprint of W-LHIT. HPLC conditions: column, Agilent Zorbax SB-C18 column (150 × 4.6 mm i.d.; 5 μm particle size); flow rate, 1 mL/min; column temperature, 27°C; mobile phase A, 0.1% formic acid, mobile phase B, acetonitrile. Data were processed using Waters Empower software. Twenty-one major peaks were present in the HPLC fingerprint. Twelve compounds were characterized by LC-MS.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4125697&req=5

Fig1: HPLC fingerprint of W-LHIT. HPLC conditions: column, Agilent Zorbax SB-C18 column (150 × 4.6 mm i.d.; 5 μm particle size); flow rate, 1 mL/min; column temperature, 27°C; mobile phase A, 0.1% formic acid, mobile phase B, acetonitrile. Data were processed using Waters Empower software. Twenty-one major peaks were present in the HPLC fingerprint. Twelve compounds were characterized by LC-MS.

Mentions: High pressure liquid chromatography (HPLC) fingerprinting is recommended by the FDA as a means of standardization of botanical products. The HPLC fingerprint of W-LHIT was generated using a Waters 2690 HPLC coupled with photodiode array detector (PDA; Waters, Milford, MA). 100 mg of W-LHIT was dissolved into 1 mL of CH3CN and 0.1% formic acid mixture (1:1 ratio). The solution was filtered through Whatman 0.45 μm syringe filters (Whatman Inc., Clifton, NJ). 10 μL of filtered solution was injected and analyzed on a ZORBAX SB-C18 (4.6× 150 mm, 5 μm) column (Agilent, Santa Clara, CA). 0.1% aqueous formic acid was used as mobile phase A and CH3CN was used as mobile phase B with a constant flow rate of 1.0 mL/min. The gradient was started at 2% B and linearly went up to 25% B within 45 min, then to 35% B within 25 min, to 55% B within 15 min, to 75% B within 10 min, and maintained at 75% B for 5 min. Waters’ Empower software was used for data collection and analysis. A total of 21 major peaks were present in the HPLC fingerprint (Figure 1). Twelve compounds were characterized by Liquid chromatography–mass spectrometry (LC-MS) as quercetin 3-O-glucuronide from Nelumbo nucifera Gaertn; hesperidin, nobiletin, tangeretin, and 3-hydroxy-5,6,7,8,3’,4’-hexamethoxyflavone from Fructus aurantii; jatrorrhizine, coptisine, and berberine from rhizome of Coptis chinensis; astragaloside IV from Radix astragali; ganolucidic acid D, ganoderic acid K, and ganoderic acid H from Ganoderma lucidum. Their chemical structures and corresponding peaks are shown in Figure 1. Three batches of W-LHIT products were generated. HPLC fingerprints of each individual herbal medicine and comparison of peak intensities of identified compounds were used to monitor the quality of different batches of W-LHIT product. Berberine was used as the key index compound.Figure 1


Weight loss herbal intervention therapy (W-LHIT) a non-appetite suppressing natural product controls weight and lowers cholesterol and glucose levels in a murine model.

Yang N, Chung D, Liu C, Liang B, Li XM - BMC Complement Altern Med (2014)

HPLC fingerprint of W-LHIT. HPLC conditions: column, Agilent Zorbax SB-C18 column (150 × 4.6 mm i.d.; 5 μm particle size); flow rate, 1 mL/min; column temperature, 27°C; mobile phase A, 0.1% formic acid, mobile phase B, acetonitrile. Data were processed using Waters Empower software. Twenty-one major peaks were present in the HPLC fingerprint. Twelve compounds were characterized by LC-MS.
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4125697&req=5

Fig1: HPLC fingerprint of W-LHIT. HPLC conditions: column, Agilent Zorbax SB-C18 column (150 × 4.6 mm i.d.; 5 μm particle size); flow rate, 1 mL/min; column temperature, 27°C; mobile phase A, 0.1% formic acid, mobile phase B, acetonitrile. Data were processed using Waters Empower software. Twenty-one major peaks were present in the HPLC fingerprint. Twelve compounds were characterized by LC-MS.
Mentions: High pressure liquid chromatography (HPLC) fingerprinting is recommended by the FDA as a means of standardization of botanical products. The HPLC fingerprint of W-LHIT was generated using a Waters 2690 HPLC coupled with photodiode array detector (PDA; Waters, Milford, MA). 100 mg of W-LHIT was dissolved into 1 mL of CH3CN and 0.1% formic acid mixture (1:1 ratio). The solution was filtered through Whatman 0.45 μm syringe filters (Whatman Inc., Clifton, NJ). 10 μL of filtered solution was injected and analyzed on a ZORBAX SB-C18 (4.6× 150 mm, 5 μm) column (Agilent, Santa Clara, CA). 0.1% aqueous formic acid was used as mobile phase A and CH3CN was used as mobile phase B with a constant flow rate of 1.0 mL/min. The gradient was started at 2% B and linearly went up to 25% B within 45 min, then to 35% B within 25 min, to 55% B within 15 min, to 75% B within 10 min, and maintained at 75% B for 5 min. Waters’ Empower software was used for data collection and analysis. A total of 21 major peaks were present in the HPLC fingerprint (Figure 1). Twelve compounds were characterized by Liquid chromatography–mass spectrometry (LC-MS) as quercetin 3-O-glucuronide from Nelumbo nucifera Gaertn; hesperidin, nobiletin, tangeretin, and 3-hydroxy-5,6,7,8,3’,4’-hexamethoxyflavone from Fructus aurantii; jatrorrhizine, coptisine, and berberine from rhizome of Coptis chinensis; astragaloside IV from Radix astragali; ganolucidic acid D, ganoderic acid K, and ganoderic acid H from Ganoderma lucidum. Their chemical structures and corresponding peaks are shown in Figure 1. Three batches of W-LHIT products were generated. HPLC fingerprints of each individual herbal medicine and comparison of peak intensities of identified compounds were used to monitor the quality of different batches of W-LHIT product. Berberine was used as the key index compound.Figure 1

Bottom Line: In addition, significantly increased PPARγ (peroxisome proliferator activated receptor γ) and FABP4 (fatty acid binding protein 4) gene expression were found in epdidymal fat tissues.Liver and kidney function and hematology testing results of W-LHIT treated mice were within the normal range.W-LHIT significantly and safely reduced body weight, normalized glucose and cholesterol levels in obese mice, without suppression of appetite, and increased adipocyte PPARγ and FABP4 gene expression.

View Article: PubMed Central - PubMed

Affiliation: Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. xiu-min.li@mssm.edu.

ABSTRACT

Background: The prevalence of obesity is increasing in industrialized countries. Obesity increases the risk of coronary artery disease, stroke, cancer, hypertension, and type-2 diabetes. Unfortunately, conventional obesity drug treatment is often associated with adverse effects. The objective of this study was to evaluate a novel natural formula, Weight loss herbal intervention therapy (W-LHIT), developed from traditional Chinese medicine, for weight control in a high-fat-diet (HFD) induced obesity murine model.

Methods: Two sets of experiments were performed. In experiment 1, 14-week-old C57BL/6 J male mice were fed with HFD for 21 days and then separated into 3 weight-matched groups. One group continued on the HFD as obese-controls. Two groups were switched from HFD to normal fat level diet (NFD) and sham or W-LHIT treated. In experiment 2, 25-week-old obese mice, following 2 weeks acclimatization, received either W-LHIT or sham treatment while maintained on HFD. In both sets of experiments, NFD fed, age matched normal weight mice served as normal controls. Body weight and food intake were recorded. Epididymal fat pad weight, serum glucose and cholesterol levels, as well as PPARγ and FABP4 gene expression in epididymal fat tissue were analyzed at the end of the experiment.

Results: In experiment 1, W-LHIT treated obese mice lost body weight 12.2 ± 3.8% whereas sham treated mice lost 5.5 ± 2.8% by day 10 after switching from the HFD to the NFD, without reduction of chow consumption. In experiment 2, W-LHIT treated obese mice maintained on the HFD had significantly lower body weight (8 fold less) than the sham treated mice. W-LHIT treatment also reduced epididymal fat pad weight, blood cholesterol and glucose levels versus sham treated mice without reduced chow consumption. In addition, significantly increased PPARγ (peroxisome proliferator activated receptor γ) and FABP4 (fatty acid binding protein 4) gene expression were found in epdidymal fat tissues. Liver and kidney function and hematology testing results of W-LHIT treated mice were within the normal range.

Conclusions: W-LHIT significantly and safely reduced body weight, normalized glucose and cholesterol levels in obese mice, without suppression of appetite, and increased adipocyte PPARγ and FABP4 gene expression.

Show MeSH
Related in: MedlinePlus