Limits...
Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles.

Hemmati Borji S, Nasseri S, Mahvi AH, Nabizadeh R, Javadi AH - J Environ Health Sci Eng (2014)

Bottom Line: In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized.At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)-doped TiO2 dosage.With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Environmental Health Engineering, School of Public Health and Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.

ABSTRACT
In this study Fe (III)-doped TiO2 nanoparticles were synthesized by sol-gel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380 nm) irradiation and visible light (>380 nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)-doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)-doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH = 3 and catalyst dosage = and 0.5 g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated.

No MeSH data available.


Related in: MedlinePlus

TEM images of the Fe (III)-doped TiO2 sample (Scale bar=100 nm in panel a; scale bar=50 nm in panel b).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4125378&req=5

Figure 4: TEM images of the Fe (III)-doped TiO2 sample (Scale bar=100 nm in panel a; scale bar=50 nm in panel b).

Mentions: The SEM images of Fe (III)-doped TiO2 nanoparticles are shown in Figure 3 which confirm the presence of β TiO2. The particle size distribution determined from SEM images was less than 50 nm. The atomic ratio of Fe to Ti, 0.034% was estimated from the EDX analysis. TEM results (Figure 4 (a and b)) revealed that the sample consisted of agglomerates of particles 10–50 nm in size, which is in general agreement with the SEM findings.


Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles.

Hemmati Borji S, Nasseri S, Mahvi AH, Nabizadeh R, Javadi AH - J Environ Health Sci Eng (2014)

TEM images of the Fe (III)-doped TiO2 sample (Scale bar=100 nm in panel a; scale bar=50 nm in panel b).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4125378&req=5

Figure 4: TEM images of the Fe (III)-doped TiO2 sample (Scale bar=100 nm in panel a; scale bar=50 nm in panel b).
Mentions: The SEM images of Fe (III)-doped TiO2 nanoparticles are shown in Figure 3 which confirm the presence of β TiO2. The particle size distribution determined from SEM images was less than 50 nm. The atomic ratio of Fe to Ti, 0.034% was estimated from the EDX analysis. TEM results (Figure 4 (a and b)) revealed that the sample consisted of agglomerates of particles 10–50 nm in size, which is in general agreement with the SEM findings.

Bottom Line: In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized.At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)-doped TiO2 dosage.With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Environmental Health Engineering, School of Public Health and Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.

ABSTRACT
In this study Fe (III)-doped TiO2 nanoparticles were synthesized by sol-gel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380 nm) irradiation and visible light (>380 nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)-doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)-doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH = 3 and catalyst dosage = and 0.5 g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated.

No MeSH data available.


Related in: MedlinePlus