Limits...
Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles.

Hemmati Borji S, Nasseri S, Mahvi AH, Nabizadeh R, Javadi AH - J Environ Health Sci Eng (2014)

Bottom Line: In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized.At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)-doped TiO2 dosage.With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Environmental Health Engineering, School of Public Health and Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.

ABSTRACT
In this study Fe (III)-doped TiO2 nanoparticles were synthesized by sol-gel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380 nm) irradiation and visible light (>380 nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)-doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)-doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH = 3 and catalyst dosage = and 0.5 g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated.

No MeSH data available.


Related in: MedlinePlus

Pseudo second-order degradation rate of phenol (Fe(III)- doped TiO2/Vis and TiO2/Vis processes).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
getmorefigures.php?uid=PMC4125378&req=5

Figure 10: Pseudo second-order degradation rate of phenol (Fe(III)- doped TiO2/Vis and TiO2/Vis processes).

Mentions: However according to the results the degradation behavior of phenol by Fe(III)-doped TiO2 and P25 TiO2 under visible light obeys pseudo second order kinetics (Figure 10).


Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles.

Hemmati Borji S, Nasseri S, Mahvi AH, Nabizadeh R, Javadi AH - J Environ Health Sci Eng (2014)

Pseudo second-order degradation rate of phenol (Fe(III)- doped TiO2/Vis and TiO2/Vis processes).
© Copyright Policy - open-access
Related In: Results  -  Collection

License 1 - License 2
Show All Figures
getmorefigures.php?uid=PMC4125378&req=5

Figure 10: Pseudo second-order degradation rate of phenol (Fe(III)- doped TiO2/Vis and TiO2/Vis processes).
Mentions: However according to the results the degradation behavior of phenol by Fe(III)-doped TiO2 and P25 TiO2 under visible light obeys pseudo second order kinetics (Figure 10).

Bottom Line: In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized.At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)-doped TiO2 dosage.With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased.

View Article: PubMed Central - HTML - PubMed

Affiliation: Department of Environmental Health Engineering, School of Public Health and Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.

ABSTRACT
In this study Fe (III)-doped TiO2 nanoparticles were synthesized by sol-gel method at two atomic ratio of Fe/Ti, 0.006 and 0.034 percent. Then the photoactivity of them was investigated on degradation of phenol under UV (<380 nm) irradiation and visible light (>380 nm). Results showed that at appropriate atomic ratio of Fe to Ti (% 0.034) photoactivity of Fe(III)-doped TiO2 nanoparticles increased. In addition, the effects of various operational parameters on photocatalytic degradation, such as pH, initial concentration of phenol and amount of photocatalyst were examined and optimized. At all different initial concentration, highest degradation efficiency occurred at pH = 3 and 0.5 g/L Fe(III)-doped TiO2 dosage. With increase in initial concentration of phenol, photocatalytic degradation efficiency decreased. Photoactivity of Fe (III)-doped TiO2 under UV irradiation and visible light at optimal condition (pH = 3 and catalyst dosage = and 0.5 g/L) was compared with P25 TiO2 nanoparticles. Results showed that photoactivity of Fe(III)-doped TiO2 under visible light was more than P25 TiO2 photoactivity, but it was less than P25 TiO2 photoactivity under UV irradiation. Also efficiency of UV irradiation alone and amount of phenol adsorption on Fe(III)-doped TiO2 at dark condition was investigated.

No MeSH data available.


Related in: MedlinePlus