Limits...
Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor.

Kiani MJ, Harun FK, Ahmadi MT, Rahmani M, Saeidmanesh M, Zare M - Nanoscale Res Lett (2014)

Bottom Line: Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET).Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane.Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia ; Department of Electrical Engineering, Islamic Azad University, Yasooj branch, Yasooj 75916, Iran.

ABSTRACT
Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (Q LP and L LP) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.

No MeSH data available.


Monolayer graphene structure with one-atom thickness.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4125348&req=5

Figure 1: Monolayer graphene structure with one-atom thickness.

Mentions: Graphene is a monolayer of sp2-bonded carbon atoms, and this sp2 bond makes the graphene structure look like honeycomb crystal, as shown in FigureĀ 1[1]. Graphene is called the mother of graphite (many layers of graphene) because it can act as the basic building block of these allotropes [2,3]. Graphene was theoretically discovered back in the 1940s, but at that time, graphene (a 2D layer crystal) was believed to be too thermodynamically unstable to be produced in the real world [4].


Conductance modulation of charged lipid bilayer using electrolyte-gated graphene-field effect transistor.

Kiani MJ, Harun FK, Ahmadi MT, Rahmani M, Saeidmanesh M, Zare M - Nanoscale Res Lett (2014)

Monolayer graphene structure with one-atom thickness.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4125348&req=5

Figure 1: Monolayer graphene structure with one-atom thickness.
Mentions: Graphene is a monolayer of sp2-bonded carbon atoms, and this sp2 bond makes the graphene structure look like honeycomb crystal, as shown in FigureĀ 1[1]. Graphene is called the mother of graphite (many layers of graphene) because it can act as the basic building block of these allotropes [2,3]. Graphene was theoretically discovered back in the 1940s, but at that time, graphene (a 2D layer crystal) was believed to be too thermodynamically unstable to be produced in the real world [4].

Bottom Line: Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET).Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane.Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.

View Article: PubMed Central - HTML - PubMed

Affiliation: Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai, Johor 81310, Malaysia ; Department of Electrical Engineering, Islamic Azad University, Yasooj branch, Yasooj 75916, Iran.

ABSTRACT
Graphene is an attention-grabbing material in electronics, physics, chemistry, and even biology because of its unique properties such as high surface-area-to-volume ratio. Also, the ability of graphene-based materials to continuously tune charge carriers from holes to electrons makes them promising for biological applications, especially in lipid bilayer-based sensors. Furthermore, changes in charged lipid membrane properties can be electrically detected by a graphene-based electrolyte-gated graphene field effect transistor (GFET). In this paper, a monolayer graphene-based GFET with a focus on the conductance variation caused by membrane electric charges and thickness is studied. Monolayer graphene conductance as an electrical detection platform is suggested for neutral, negative, and positive electric-charged membrane. The electric charge and thickness of the lipid bilayer (Q LP and L LP) as a function of carrier density are proposed, and the control parameters are defined. Finally, the proposed analytical model is compared with experimental data which indicates good overall agreement.

No MeSH data available.