Limits...
Displacement-based back-analysis of the model parameters of the Nuozhadu high earth-rockfill dam.

Wu Y, Yuan H, Zhang B, Zhang Z, Yu Y - ScientificWorldJournal (2014)

Bottom Line: Displacement back-analyses were performed at different stages of the construction period, with and without considering the creep and wetting deformations.The comparison of calculation results based on different sets of back-analyzed model parameters indicates the necessity of taking the effects of creep and wetting into consideration in the numerical analyses of high earth-rockfill dams.With the resulting model parameters, the stress and deformation distributions at completion are predicted and analyzed.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.

ABSTRACT
The parameters of the constitutive model, the creep model, and the wetting model of materials of the Nuozhadu high earth-rockfill dam were back-analyzed together based on field monitoring displacement data by employing an intelligent back-analysis method. In this method, an artificial neural network is used as a substitute for time-consuming finite element analysis, and an evolutionary algorithm is applied for both network training and parameter optimization. To avoid simultaneous back-analysis of many parameters, the model parameters of the three main dam materials are decoupled and back-analyzed separately in a particular order. Displacement back-analyses were performed at different stages of the construction period, with and without considering the creep and wetting deformations. Good agreement between the numerical results and the monitoring data was obtained for most observation points, which implies that the back-analysis method and decoupling method are effective for solving complex problems with multiple models and parameters. The comparison of calculation results based on different sets of back-analyzed model parameters indicates the necessity of taking the effects of creep and wetting into consideration in the numerical analyses of high earth-rockfill dams. With the resulting model parameters, the stress and deformation distributions at completion are predicted and analyzed.

Show MeSH
Displacement and stress distribution at completion.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4121011&req=5

fig11: Displacement and stress distribution at completion.

Mentions: With the back-calculated model parameters, the displacement and stress distributions at completion were predicted (Figure 11). The maximum horizontal displacement is 111 cm, pointing to the downstream. The maximum settlement is 384 cm, approximately 1.47% of the maximum dam height, located at the lower middle of the maximum cross-section. The overall stress distribution agrees with the general distribution of earth-core rockfill dams and displays a clear arch effect. Due to buoyancy, water pressure, and large permeability differences between the rockfill and core wall, the maximum stress occurs at the bottom corner of core wall and downstream rockfill zone.


Displacement-based back-analysis of the model parameters of the Nuozhadu high earth-rockfill dam.

Wu Y, Yuan H, Zhang B, Zhang Z, Yu Y - ScientificWorldJournal (2014)

Displacement and stress distribution at completion.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4121011&req=5

fig11: Displacement and stress distribution at completion.
Mentions: With the back-calculated model parameters, the displacement and stress distributions at completion were predicted (Figure 11). The maximum horizontal displacement is 111 cm, pointing to the downstream. The maximum settlement is 384 cm, approximately 1.47% of the maximum dam height, located at the lower middle of the maximum cross-section. The overall stress distribution agrees with the general distribution of earth-core rockfill dams and displays a clear arch effect. Due to buoyancy, water pressure, and large permeability differences between the rockfill and core wall, the maximum stress occurs at the bottom corner of core wall and downstream rockfill zone.

Bottom Line: Displacement back-analyses were performed at different stages of the construction period, with and without considering the creep and wetting deformations.The comparison of calculation results based on different sets of back-analyzed model parameters indicates the necessity of taking the effects of creep and wetting into consideration in the numerical analyses of high earth-rockfill dams.With the resulting model parameters, the stress and deformation distributions at completion are predicted and analyzed.

View Article: PubMed Central - PubMed

Affiliation: State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China.

ABSTRACT
The parameters of the constitutive model, the creep model, and the wetting model of materials of the Nuozhadu high earth-rockfill dam were back-analyzed together based on field monitoring displacement data by employing an intelligent back-analysis method. In this method, an artificial neural network is used as a substitute for time-consuming finite element analysis, and an evolutionary algorithm is applied for both network training and parameter optimization. To avoid simultaneous back-analysis of many parameters, the model parameters of the three main dam materials are decoupled and back-analyzed separately in a particular order. Displacement back-analyses were performed at different stages of the construction period, with and without considering the creep and wetting deformations. Good agreement between the numerical results and the monitoring data was obtained for most observation points, which implies that the back-analysis method and decoupling method are effective for solving complex problems with multiple models and parameters. The comparison of calculation results based on different sets of back-analyzed model parameters indicates the necessity of taking the effects of creep and wetting into consideration in the numerical analyses of high earth-rockfill dams. With the resulting model parameters, the stress and deformation distributions at completion are predicted and analyzed.

Show MeSH