Limits...
On guanidinium and cellular uptake.

Wexselblatt E, Esko JD, Tor Y - J. Org. Chem. (2014)

Bottom Line: Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking.Charge pairing and hydrogen bonding with cell surface counterparts have been proposed, but their exact role remains putative.The impact of the number and spatial relationships of the guanidinium groups on delivery and organelle/organ localization is yet to be established.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Biochemistry and ‡Department of Cellular and Molecular Medicine, University of California , San Diego 9500 Gilman Dr., La Jolla, California 92093, United States.

ABSTRACT
Guanidinium-rich scaffolds facilitate cellular translocation and delivery of bioactive cargos through biological barriers. Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking. Charge pairing and hydrogen bonding with cell surface counterparts have been proposed, but their exact role remains putative. The impact of the number and spatial relationships of the guanidinium groups on delivery and organelle/organ localization is yet to be established.

Show MeSH
Synthesis of a NHS Ester of Guanidinoneomycin46
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4120969&req=5

sch1: Synthesis of a NHS Ester of Guanidinoneomycin46


On guanidinium and cellular uptake.

Wexselblatt E, Esko JD, Tor Y - J. Org. Chem. (2014)

Synthesis of a NHS Ester of Guanidinoneomycin46
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4120969&req=5

sch1: Synthesis of a NHS Ester of Guanidinoneomycin46
Bottom Line: Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking.Charge pairing and hydrogen bonding with cell surface counterparts have been proposed, but their exact role remains putative.The impact of the number and spatial relationships of the guanidinium groups on delivery and organelle/organ localization is yet to be established.

View Article: PubMed Central - PubMed

Affiliation: Department of Chemistry and Biochemistry and ‡Department of Cellular and Molecular Medicine, University of California , San Diego 9500 Gilman Dr., La Jolla, California 92093, United States.

ABSTRACT
Guanidinium-rich scaffolds facilitate cellular translocation and delivery of bioactive cargos through biological barriers. Although impressive uptake has been demonstrated for nonoligomeric and nonpept(o)idic guanidinylated scaffolds in cell cultures and animal models, the fundamental understanding of these processes is lacking. Charge pairing and hydrogen bonding with cell surface counterparts have been proposed, but their exact role remains putative. The impact of the number and spatial relationships of the guanidinium groups on delivery and organelle/organ localization is yet to be established.

Show MeSH