Limits...
Reduced resting-state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa.

Lavagnino L, Amianto F, D'Agata F, Huang Z, Mortara P, Abbate-Daga G, Marzola E, Spalatro A, Fassino S, Northoff G - Front Behav Neurosci (2014)

Bottom Line: Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison).The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing.The results should be considered preliminary due to the small sample size.

View Article: PubMed Central - PubMed

Affiliation: Department of Neuroscience, AOU San Giovanni Battista , Turin , Italy ; Institute of Mental Health Research, University of Ottawa, Royal Ottawa Healthcare Group , Ottawa, ON , Canada.

ABSTRACT

Background: Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women.

Methods: Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain.

Results: Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = -0.4; P = 0.02) and interoceptive awareness (r = -0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates.

Conclusion: Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

No MeSH data available.


Related in: MedlinePlus

Seed-based analysis of the functional connectivity of the paracentral lobule, comparing patients with bulimia nervosa with healthy controls. Areas of significant difference (cluster-wise p < 0.05 corrected; threshold at t > 2.7) between bulimic patients and controls: (A) left posterior cingulate cortex (PCC) (peak = 1, 40, 20; t = 3.7; Brodmann area 29); (B) right cuneus (RC peak = −1, 85, 14; t = 4.2; Brodmann area 18). (C) right middle occipital gyrus (OG) (peak = −43, 76, 2; t = 3.6; Brodmann area 19); analyses conducted with age, BMI, and depressive symptoms as covariates. L, left; R, right. The graphs show the relationship between the Z-scores of the functional connectivity in the area (C) and the psychopathology scales. The correlations were confirmed with bootstrapping.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4120855&req=5

Figure 3: Seed-based analysis of the functional connectivity of the paracentral lobule, comparing patients with bulimia nervosa with healthy controls. Areas of significant difference (cluster-wise p < 0.05 corrected; threshold at t > 2.7) between bulimic patients and controls: (A) left posterior cingulate cortex (PCC) (peak = 1, 40, 20; t = 3.7; Brodmann area 29); (B) right cuneus (RC peak = −1, 85, 14; t = 4.2; Brodmann area 18). (C) right middle occipital gyrus (OG) (peak = −43, 76, 2; t = 3.6; Brodmann area 19); analyses conducted with age, BMI, and depressive symptoms as covariates. L, left; R, right. The graphs show the relationship between the Z-scores of the functional connectivity in the area (C) and the psychopathology scales. The correlations were confirmed with bootstrapping.

Mentions: The seed-based analysis revealed a decrease in the rs-FC of the paracentral lobule in BN subjects compared to controls in three regions (p = 0.05): the left PCC (peak = 1, 40, 20; t = 3.7; Brodmann area 29), the right middle occipital gyrus (peak = −43, 76, 2; t = 3.6; Brodmann area 19), and the right cuneus (peak = −1, 85, 14; t = 4.2; Brodmann area 18) (see Figure 3 for details).


Reduced resting-state functional connectivity of the somatosensory cortex predicts psychopathological symptoms in women with bulimia nervosa.

Lavagnino L, Amianto F, D'Agata F, Huang Z, Mortara P, Abbate-Daga G, Marzola E, Spalatro A, Fassino S, Northoff G - Front Behav Neurosci (2014)

Seed-based analysis of the functional connectivity of the paracentral lobule, comparing patients with bulimia nervosa with healthy controls. Areas of significant difference (cluster-wise p < 0.05 corrected; threshold at t > 2.7) between bulimic patients and controls: (A) left posterior cingulate cortex (PCC) (peak = 1, 40, 20; t = 3.7; Brodmann area 29); (B) right cuneus (RC peak = −1, 85, 14; t = 4.2; Brodmann area 18). (C) right middle occipital gyrus (OG) (peak = −43, 76, 2; t = 3.6; Brodmann area 19); analyses conducted with age, BMI, and depressive symptoms as covariates. L, left; R, right. The graphs show the relationship between the Z-scores of the functional connectivity in the area (C) and the psychopathology scales. The correlations were confirmed with bootstrapping.
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4120855&req=5

Figure 3: Seed-based analysis of the functional connectivity of the paracentral lobule, comparing patients with bulimia nervosa with healthy controls. Areas of significant difference (cluster-wise p < 0.05 corrected; threshold at t > 2.7) between bulimic patients and controls: (A) left posterior cingulate cortex (PCC) (peak = 1, 40, 20; t = 3.7; Brodmann area 29); (B) right cuneus (RC peak = −1, 85, 14; t = 4.2; Brodmann area 18). (C) right middle occipital gyrus (OG) (peak = −43, 76, 2; t = 3.6; Brodmann area 19); analyses conducted with age, BMI, and depressive symptoms as covariates. L, left; R, right. The graphs show the relationship between the Z-scores of the functional connectivity in the area (C) and the psychopathology scales. The correlations were confirmed with bootstrapping.
Mentions: The seed-based analysis revealed a decrease in the rs-FC of the paracentral lobule in BN subjects compared to controls in three regions (p = 0.05): the left PCC (peak = 1, 40, 20; t = 3.7; Brodmann area 29), the right middle occipital gyrus (peak = −43, 76, 2; t = 3.6; Brodmann area 19), and the right cuneus (peak = −1, 85, 14; t = 4.2; Brodmann area 18) (see Figure 3 for details).

Bottom Line: Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison).The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing.The results should be considered preliminary due to the small sample size.

View Article: PubMed Central - PubMed

Affiliation: Department of Neuroscience, AOU San Giovanni Battista , Turin , Italy ; Institute of Mental Health Research, University of Ottawa, Royal Ottawa Healthcare Group , Ottawa, ON , Canada.

ABSTRACT

Background: Alterations in the resting-state functional connectivity (rs-FC) of several brain networks have been demonstrated in eating disorders. However, very few studies are currently available on brain network dysfunctions in bulimia nervosa (BN). The somatosensory network is central in processing body-related stimuli and it may be altered in BN. The present study therefore aimed to investigate rs-FC in the somatosensory network in bulimic women.

Methods: Sixteen medication-free women with BN (age = 23 ± 5 years) and 18 matched controls (age = 23 ± 3 years) underwent a functional magnetic resonance resting-state scan and assessment of eating disorder symptoms. Within-network and seed-based functional connectivity analyses were conducted to assess rs-FC within the somatosensory network and to other areas of the brain.

Results: Bulimia nervosa patients showed a decreased rs-FC both within the somatosensory network (t = 9.0, df = 1, P = 0.005) and with posterior cingulate cortex and two visual areas (the right middle occipital gyrus and the right cuneus) (P = 0.05 corrected for multiple comparison). The rs-FC of the left paracentral lobule with the right middle occipital gyrus correlated with psychopathology measures like bulimia (r = -0.4; P = 0.02) and interoceptive awareness (r = -0.4; P = 0.01). Analyses were conducted using age, BMI (body mass index), and depressive symptoms as covariates.

Conclusion: Our findings show a specific alteration of the rs-FC of the somatosensory cortex in BN patients, which correlates with eating disorder symptoms. The region in the right middle occipital gyrus is implicated in body processing and is known as extrastriate body area (EBA). The connectivity between the somatosensory cortex and the EBA might be related to dysfunctions in body image processing. The results should be considered preliminary due to the small sample size.

No MeSH data available.


Related in: MedlinePlus