Limits...
The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves.

Balser N, Lorey B, Pilgramm S, Naumann T, Kindermann S, Stark R, Zentgraf K, Williams AM, Munzert J - Front Hum Neurosci (2014)

Bottom Line: In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses.In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects.Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport.

View Article: PubMed Central - PubMed

Affiliation: Institute for Sport Science, University of Giessen Giessen, Germany.

ABSTRACT
In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action-observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task.

No MeSH data available.


Screenshots of all four experimental conditions. Each of the 128 video clips lasted 2.9–4.6 s. (A) Male tennis player performing a tennis serve (Tennis Anticipation condition). (B) Female volleyball player performing a volleyball serve (Volleyball Anticipation condition). All serve sequences were stopped at ball–racket respective ball–hand contact. (C) Female tennis player bouncing the ball with her racket (Tennis Observation condition). (D) Male volleyball player bouncing the ball with his hand (Volleyball Observation condition).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4117995&req=5

Figure 1: Screenshots of all four experimental conditions. Each of the 128 video clips lasted 2.9–4.6 s. (A) Male tennis player performing a tennis serve (Tennis Anticipation condition). (B) Female volleyball player performing a volleyball serve (Volleyball Anticipation condition). All serve sequences were stopped at ball–racket respective ball–hand contact. (C) Female tennis player bouncing the ball with her racket (Tennis Observation condition). (D) Male volleyball player bouncing the ball with his hand (Volleyball Observation condition).

Mentions: Participants observed 128 stimulus videos with a duration ranging from 2.9 to 4.6 s. Half of them showed tennis and volleyball serves performed by a male and a female right handed model from each sport that were playing on the same level as the corresponding expertise group in our study. The tennis as well as the volleyball serves were all stopped at ball-racket or ball-hand contact respectively. For the videos of the tennis serves, the camera was placed right before the baseline at a position that is typical for a player waiting to return the opponent's serve (cf. Figure 1A). To simulate the situation of a volleyball player waiting to receive an opponent's serve, for the volleyball serves the camera was positioned 6 m behind the net in the middle of the field (cf. Figure 1B). One half of the 32 video clips from each sport showed serves to the left-hand corner and one half showed serves to the right-hand corner of the volleyball field or to the right service box of the tennis court respectively. The remaining 64 video clips displayed the two models of both sports bouncing a tennis ball with their racket respectively a volleyball with their right hand standing at the baseline (cf. Figures 1C,D). All stimuli were recorded using a Basler avA 1600—50 gc (Basler AG, Ahrensburg, Germany) video camera with a sampling rate of 35 fps.


The influence of expertise on brain activation of the action observation network during anticipation of tennis and volleyball serves.

Balser N, Lorey B, Pilgramm S, Naumann T, Kindermann S, Stark R, Zentgraf K, Williams AM, Munzert J - Front Hum Neurosci (2014)

Screenshots of all four experimental conditions. Each of the 128 video clips lasted 2.9–4.6 s. (A) Male tennis player performing a tennis serve (Tennis Anticipation condition). (B) Female volleyball player performing a volleyball serve (Volleyball Anticipation condition). All serve sequences were stopped at ball–racket respective ball–hand contact. (C) Female tennis player bouncing the ball with her racket (Tennis Observation condition). (D) Male volleyball player bouncing the ball with his hand (Volleyball Observation condition).
© Copyright Policy - open-access
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4117995&req=5

Figure 1: Screenshots of all four experimental conditions. Each of the 128 video clips lasted 2.9–4.6 s. (A) Male tennis player performing a tennis serve (Tennis Anticipation condition). (B) Female volleyball player performing a volleyball serve (Volleyball Anticipation condition). All serve sequences were stopped at ball–racket respective ball–hand contact. (C) Female tennis player bouncing the ball with her racket (Tennis Observation condition). (D) Male volleyball player bouncing the ball with his hand (Volleyball Observation condition).
Mentions: Participants observed 128 stimulus videos with a duration ranging from 2.9 to 4.6 s. Half of them showed tennis and volleyball serves performed by a male and a female right handed model from each sport that were playing on the same level as the corresponding expertise group in our study. The tennis as well as the volleyball serves were all stopped at ball-racket or ball-hand contact respectively. For the videos of the tennis serves, the camera was placed right before the baseline at a position that is typical for a player waiting to return the opponent's serve (cf. Figure 1A). To simulate the situation of a volleyball player waiting to receive an opponent's serve, for the volleyball serves the camera was positioned 6 m behind the net in the middle of the field (cf. Figure 1B). One half of the 32 video clips from each sport showed serves to the left-hand corner and one half showed serves to the right-hand corner of the volleyball field or to the right service box of the tennis court respectively. The remaining 64 video clips displayed the two models of both sports bouncing a tennis ball with their racket respectively a volleyball with their right hand standing at the baseline (cf. Figures 1C,D). All stimuli were recorded using a Basler avA 1600—50 gc (Basler AG, Ahrensburg, Germany) video camera with a sampling rate of 35 fps.

Bottom Line: In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses.In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects.Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport.

View Article: PubMed Central - PubMed

Affiliation: Institute for Sport Science, University of Giessen Giessen, Germany.

ABSTRACT
In many daily activities, and especially in sport, it is necessary to predict the effects of others' actions in order to initiate appropriate responses. Recently, researchers have suggested that the action-observation network (AON) including the cerebellum plays an essential role during such anticipation, particularly in sport expert performers. In the present study, we examined the influence of task-specific expertise on the AON by investigating differences between two expert groups trained in different sports while anticipating action effects. Altogether, 15 tennis and 16 volleyball experts anticipated the direction of observed tennis and volleyball serves while undergoing functional magnetic resonance imaging (fMRI). The expert group in each sport acted as novice controls in the other sport with which they had only little experience. When contrasting anticipation in both expertise conditions with the corresponding untrained sport, a stronger activation of AON areas (SPL, SMA), and particularly of cerebellar structures, was observed. Furthermore, the neural activation within the cerebellum and the SPL was linearly correlated with participant's anticipation performance, irrespective of the specific expertise. For the SPL, this relationship also holds when an expert performs a domain-specific anticipation task. Notably, the stronger activation of the cerebellum as well as of the SMA and the SPL in the expertise conditions suggests that experts rely on their more fine-tuned perceptual-motor representations that have improved during years of training when anticipating the effects of others' actions in their preferred sport. The association of activation within the SPL and the cerebellum with the task achievement suggests that these areas are the predominant brain sites involved in fast motor predictions. The SPL reflects the processing of domain-specific contextual information and the cerebellum the usage of a predictive internal model to solve the anticipation task.

No MeSH data available.