Limits...
Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via mu receptors.

Willner D, Cohen-Yeshurun A, Avidan A, Ozersky V, Shohami E, Leker RR - PLoS ONE (2014)

Bottom Line: Addition of naloxone to morphine-treated NPCs reversed the anti-proliferative and pro-apoptotic effects of morphine.These effects were reversed with the addition of the opioid antagonist naloxone.Our results demonstrate the effects of short term morphine administration on the proliferation and differentiation of NPCs and imply a mu-receptor mechanism in the regulation of NPC survival.

View Article: PubMed Central - PubMed

Affiliation: Department of Anesthesia and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

ABSTRACT

Background: Chronic morphine treatment inhibits neural progenitor cell (NPC) progression and negatively effects hippocampal neurogenesis. However, the effect of acute opioid treatment on cell development and its influence on NPC differentiation and proliferation in vitro is unknown. We aim to investigate the effect of a single, short term exposure of morphine on the proliferation, differentiation and apoptosis of NPCs and the mechanism involved.

Methods: Cell cultures from 14-day mouse embryos were exposed to different concentrations of morphine and its antagonist naloxone for 24 hours and proliferation, differentiation and apoptosis were studied. Proliferating cells were labeled with bromodeoxyuridine (BrdU) and cell fate was studied with immunocytochemistry.

Results: Cells treated with morphine demonstrated decreased BrdU expression with increased morphine concentrations. Analysis of double-labeled cells showed a decrease in cells co-stained for BrdU with nestin and an increase in cells co-stained with BrdU and neuron-specific class III β-tubuline (TUJ1) in a dose dependent manner. Furthermore, a significant increase in caspase-3 activity was observed in the nestin- positive cells. Addition of naloxone to morphine-treated NPCs reversed the anti-proliferative and pro-apoptotic effects of morphine.

Conclusions: Short term morphine exposure induced inhibition of NPC proliferation and increased active caspase-3 expression in a dose dependent manner. Morphine induces neuronal and glial differentiation and decreases the expression of nestin- positive cells. These effects were reversed with the addition of the opioid antagonist naloxone. Our results demonstrate the effects of short term morphine administration on the proliferation and differentiation of NPCs and imply a mu-receptor mechanism in the regulation of NPC survival.

Show MeSH

Related in: MedlinePlus

Morphine increases neuronal differentiation and inhibits self-renewal of NPCs.NPCs exposed to increasing levels of morphine demonstrated a decrease in BrdU- positive- nestin-positive cell expression while TUJ1- positive- BrdU- positive co-staining was enhanced with increased morphine concentrations (*p<0.05, **p<0.01, ***p<0.001 vs. untreated; +p<0.05, +++p<0.001 vs. 13 µM) (3A, 3B).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4114742&req=5

pone-0103043-g003: Morphine increases neuronal differentiation and inhibits self-renewal of NPCs.NPCs exposed to increasing levels of morphine demonstrated a decrease in BrdU- positive- nestin-positive cell expression while TUJ1- positive- BrdU- positive co-staining was enhanced with increased morphine concentrations (*p<0.05, **p<0.01, ***p<0.001 vs. untreated; +p<0.05, +++p<0.001 vs. 13 µM) (3A, 3B).

Mentions: A dose dependent decrease in the levels of the neuroepithelial marker, nestin, was detected in cell cultures exposed to different concentrations of morphine. Untreated cultures demonstrated almost a complete profile of neuroepithelial cells, with 92.1±2.2% of cells incorporating BrdU being nestin- positive. However, in the 0.13 µM and 1.3 µM morphine-treated group, 66.1±8.1% and 24.9±7.2% of the cells, respectively, were BrdU- nestin- positive (p<0.05 and p<0.001 vs. untreated, respectively). The sharpest reduction in BrdU- nestin- positive cells was demonstrated in the cells treated with 13 µM morphine where no neuroepithelial cells from the BrdU- positive population were detected (p<0.001) (Figure 3A, 3B). No positive immunostaining was observed for oligodentrocytes (Gal C) and mature neurons (NeuN) in the untreated group as well as in all the treatment groups.


Short term morphine exposure in vitro alters proliferation and differentiation of neural progenitor cells and promotes apoptosis via mu receptors.

Willner D, Cohen-Yeshurun A, Avidan A, Ozersky V, Shohami E, Leker RR - PLoS ONE (2014)

Morphine increases neuronal differentiation and inhibits self-renewal of NPCs.NPCs exposed to increasing levels of morphine demonstrated a decrease in BrdU- positive- nestin-positive cell expression while TUJ1- positive- BrdU- positive co-staining was enhanced with increased morphine concentrations (*p<0.05, **p<0.01, ***p<0.001 vs. untreated; +p<0.05, +++p<0.001 vs. 13 µM) (3A, 3B).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4114742&req=5

pone-0103043-g003: Morphine increases neuronal differentiation and inhibits self-renewal of NPCs.NPCs exposed to increasing levels of morphine demonstrated a decrease in BrdU- positive- nestin-positive cell expression while TUJ1- positive- BrdU- positive co-staining was enhanced with increased morphine concentrations (*p<0.05, **p<0.01, ***p<0.001 vs. untreated; +p<0.05, +++p<0.001 vs. 13 µM) (3A, 3B).
Mentions: A dose dependent decrease in the levels of the neuroepithelial marker, nestin, was detected in cell cultures exposed to different concentrations of morphine. Untreated cultures demonstrated almost a complete profile of neuroepithelial cells, with 92.1±2.2% of cells incorporating BrdU being nestin- positive. However, in the 0.13 µM and 1.3 µM morphine-treated group, 66.1±8.1% and 24.9±7.2% of the cells, respectively, were BrdU- nestin- positive (p<0.05 and p<0.001 vs. untreated, respectively). The sharpest reduction in BrdU- nestin- positive cells was demonstrated in the cells treated with 13 µM morphine where no neuroepithelial cells from the BrdU- positive population were detected (p<0.001) (Figure 3A, 3B). No positive immunostaining was observed for oligodentrocytes (Gal C) and mature neurons (NeuN) in the untreated group as well as in all the treatment groups.

Bottom Line: Addition of naloxone to morphine-treated NPCs reversed the anti-proliferative and pro-apoptotic effects of morphine.These effects were reversed with the addition of the opioid antagonist naloxone.Our results demonstrate the effects of short term morphine administration on the proliferation and differentiation of NPCs and imply a mu-receptor mechanism in the regulation of NPC survival.

View Article: PubMed Central - PubMed

Affiliation: Department of Anesthesia and Critical Care Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.

ABSTRACT

Background: Chronic morphine treatment inhibits neural progenitor cell (NPC) progression and negatively effects hippocampal neurogenesis. However, the effect of acute opioid treatment on cell development and its influence on NPC differentiation and proliferation in vitro is unknown. We aim to investigate the effect of a single, short term exposure of morphine on the proliferation, differentiation and apoptosis of NPCs and the mechanism involved.

Methods: Cell cultures from 14-day mouse embryos were exposed to different concentrations of morphine and its antagonist naloxone for 24 hours and proliferation, differentiation and apoptosis were studied. Proliferating cells were labeled with bromodeoxyuridine (BrdU) and cell fate was studied with immunocytochemistry.

Results: Cells treated with morphine demonstrated decreased BrdU expression with increased morphine concentrations. Analysis of double-labeled cells showed a decrease in cells co-stained for BrdU with nestin and an increase in cells co-stained with BrdU and neuron-specific class III β-tubuline (TUJ1) in a dose dependent manner. Furthermore, a significant increase in caspase-3 activity was observed in the nestin- positive cells. Addition of naloxone to morphine-treated NPCs reversed the anti-proliferative and pro-apoptotic effects of morphine.

Conclusions: Short term morphine exposure induced inhibition of NPC proliferation and increased active caspase-3 expression in a dose dependent manner. Morphine induces neuronal and glial differentiation and decreases the expression of nestin- positive cells. These effects were reversed with the addition of the opioid antagonist naloxone. Our results demonstrate the effects of short term morphine administration on the proliferation and differentiation of NPCs and imply a mu-receptor mechanism in the regulation of NPC survival.

Show MeSH
Related in: MedlinePlus