Limits...
Microfluidics in biotechnology.

Barry R, Ivanov D - J Nanobiotechnology (2004)

Bottom Line: Microfluidics enables biotechnological processes to proceed on a scale (microns) at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced.The versatility of microfluidic devices allows interfacing with current methods and technologies.The flexibility of microfluidics will facilitate its exploitation in assay development across multiple biotechnological disciplines.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Biological Sciences Royal Holloway, University of London Egham, Surrey TW20 0EX United Kingdom. Richard.Barry@rhul.ac.uk

ABSTRACT
Microfluidics enables biotechnological processes to proceed on a scale (microns) at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced. At the microscale sample volumes and assay times are reduced, and procedural costs are lowered. The versatility of microfluidic devices allows interfacing with current methods and technologies. Microfluidics has been applied to DNA analysis methods and shown to accelerate DNA microarray assay hybridisation times. The linking of microfluidics to protein analysis techologies, e.g. mass spectrometry, enables picomole amounts of peptide to be analysed within a controlled micro-environment. The flexibility of microfluidics will facilitate its exploitation in assay development across multiple biotechnological disciplines.

No MeSH data available.


Combinatorial peptidomics. Sample solubilisation and protein purification are not necessary, since proteolyric digection may be carried on native cells/tissues (dashed lines). The amino acid filtering (depletion) step may be repeated using combinations of up to 6 amino acid "filters", i.e. chemically reactive surfaces (e.g. derivatised beads) able to covalently cross-link particular amino-acids. Chemical depletion reduces the complexity of the peptide pool to a sufficient degree to make it compatible with direct MS detection.
© Copyright Policy
Related In: Results  -  Collection


getmorefigures.php?uid=PMC411055&req=5

Figure 3: Combinatorial peptidomics. Sample solubilisation and protein purification are not necessary, since proteolyric digection may be carried on native cells/tissues (dashed lines). The amino acid filtering (depletion) step may be repeated using combinations of up to 6 amino acid "filters", i.e. chemically reactive surfaces (e.g. derivatised beads) able to covalently cross-link particular amino-acids. Chemical depletion reduces the complexity of the peptide pool to a sufficient degree to make it compatible with direct MS detection.

Mentions: The recently reported combinatorial peptidomics approach [10] is also perfectly suited for use with integrated microfluidic systems and in principle allows identification of tryptic peptides directly from the crude proteolytic digest. Combinatorial peptidomics initially utilises peptidomics where a protein sample is proteolytically digested prior to assaying, and combines it with a combinatorial depletion of the digest (peptide pool) by chemical cross-linking via amino acid side chains to allow a subsequent profiling of the resulting sample, Figure 3.


Microfluidics in biotechnology.

Barry R, Ivanov D - J Nanobiotechnology (2004)

Combinatorial peptidomics. Sample solubilisation and protein purification are not necessary, since proteolyric digection may be carried on native cells/tissues (dashed lines). The amino acid filtering (depletion) step may be repeated using combinations of up to 6 amino acid "filters", i.e. chemically reactive surfaces (e.g. derivatised beads) able to covalently cross-link particular amino-acids. Chemical depletion reduces the complexity of the peptide pool to a sufficient degree to make it compatible with direct MS detection.
© Copyright Policy
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC411055&req=5

Figure 3: Combinatorial peptidomics. Sample solubilisation and protein purification are not necessary, since proteolyric digection may be carried on native cells/tissues (dashed lines). The amino acid filtering (depletion) step may be repeated using combinations of up to 6 amino acid "filters", i.e. chemically reactive surfaces (e.g. derivatised beads) able to covalently cross-link particular amino-acids. Chemical depletion reduces the complexity of the peptide pool to a sufficient degree to make it compatible with direct MS detection.
Mentions: The recently reported combinatorial peptidomics approach [10] is also perfectly suited for use with integrated microfluidic systems and in principle allows identification of tryptic peptides directly from the crude proteolytic digest. Combinatorial peptidomics initially utilises peptidomics where a protein sample is proteolytically digested prior to assaying, and combines it with a combinatorial depletion of the digest (peptide pool) by chemical cross-linking via amino acid side chains to allow a subsequent profiling of the resulting sample, Figure 3.

Bottom Line: Microfluidics enables biotechnological processes to proceed on a scale (microns) at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced.The versatility of microfluidic devices allows interfacing with current methods and technologies.The flexibility of microfluidics will facilitate its exploitation in assay development across multiple biotechnological disciplines.

View Article: PubMed Central - HTML - PubMed

Affiliation: School of Biological Sciences Royal Holloway, University of London Egham, Surrey TW20 0EX United Kingdom. Richard.Barry@rhul.ac.uk

ABSTRACT
Microfluidics enables biotechnological processes to proceed on a scale (microns) at which physical processes such as osmotic movement, electrophoretic-motility and surface interactions become enhanced. At the microscale sample volumes and assay times are reduced, and procedural costs are lowered. The versatility of microfluidic devices allows interfacing with current methods and technologies. Microfluidics has been applied to DNA analysis methods and shown to accelerate DNA microarray assay hybridisation times. The linking of microfluidics to protein analysis techologies, e.g. mass spectrometry, enables picomole amounts of peptide to be analysed within a controlled micro-environment. The flexibility of microfluidics will facilitate its exploitation in assay development across multiple biotechnological disciplines.

No MeSH data available.