Limits...
In vitro and in vivo characterization of the new analgesic combination Beta-caryophyllene and docosahexaenoic Acid.

Fiorenzani P, Lamponi S, Magnani A, Ceccarelli I, Aloisi AM - Evid Based Complement Alternat Med (2014)

Bottom Line: BCP changed fibroblast and astrocyte survival in a dose-dependent manner and the effect was counteracted by DHA coadministration.In the in vivo tests, pain responses were significantly decreased in the BCP and BCP+DHA groups with respect to OIL after 1 and 2 weeks of treatment.In conclusion, BCP alone or at lower concentration in combination with DHA was efficacious in modulating pain, showing a clear analgesic activity.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro, 53100 Siena, Italy.

ABSTRACT
Beta-caryophyllene (BCP) and docosahexaenoic acid (DHA) are components of several plants with documented anti-inflammatory and analgesic effects in animal pain models. In the present study, in vitro and in vivo tests were carried out to evaluate their effects, alone or in combination, during long-lasting administration in a model of persistent pain. IR spectra of the two compounds were obtained to determine their chemical stability and then in vitro toxicity was evaluated in fibroblasts and astrocytes. In the in vivo tests, the analgesic effects of BCP and BCP+DHA were determined in male rats subjected to a model of persistent recurrent pain (three repetitions of the formalin test once a week) to mimic recurrent pain. Both substances were administered per os in almond oil for 2 weeks. Gonadal hormones were determined at the end of the tests to evaluate treatment-induced effects on their levels. BCP changed fibroblast and astrocyte survival in a dose-dependent manner and the effect was counteracted by DHA coadministration. In the in vivo tests, pain responses were significantly decreased in the BCP and BCP+DHA groups with respect to OIL after 1 and 2 weeks of treatment. Estradiol and testosterone levels were increased only in the BCP group. In conclusion, BCP alone or at lower concentration in combination with DHA was efficacious in modulating pain, showing a clear analgesic activity.

No MeSH data available.


Related in: MedlinePlus

Viability of fibroblasts (NIH3T3) and astrocytes (U373-MG) after 24 hours of contact with different concentrations of BCP (a), DHA (b), or the BCP52%-DHA48% mixture (c). Data are mean ± SD of three experiments run in six replicates. *P < 0.05 versus control.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4109702&req=5

fig5: Viability of fibroblasts (NIH3T3) and astrocytes (U373-MG) after 24 hours of contact with different concentrations of BCP (a), DHA (b), or the BCP52%-DHA48% mixture (c). Data are mean ± SD of three experiments run in six replicates. *P < 0.05 versus control.

Mentions: The graphs of cell vitality of NIH3T3 fibroblasts and U373 astrocytes in contact with the different concentrations of BCP, BCP+DHA, and DHA are given below. At the higher concentrations, BCP showed significant toxic effects, as evident from the lower vitality level in those preparations (Figure 5(a)). The effect was greater on the fibroblasts than on the astrocytes. For the astrocytes, it is interesting that BCP stimulated cell proliferation at a concentration lower than 1.0 × 10−6 M and that this activity increased with decreasing concentrations. All toxic effects disappeared in the BCP+DHA mixture (Figure 5(c)). DHA did not have a toxic effect on either the fibroblasts or the astrocytes at any of the concentrations (Figure 5(b)). Hence, the disappearance of the toxic effect of BCP can be attributed to the simultaneous presence in solution of DHA, although the presence of DHA also seemed to decrease the BCP stimulation of astrocyte proliferation (this occurred starting from a BCP concentration of 1.0 × 10−6 M, as shown in Figure 5(c)).


In vitro and in vivo characterization of the new analgesic combination Beta-caryophyllene and docosahexaenoic Acid.

Fiorenzani P, Lamponi S, Magnani A, Ceccarelli I, Aloisi AM - Evid Based Complement Alternat Med (2014)

Viability of fibroblasts (NIH3T3) and astrocytes (U373-MG) after 24 hours of contact with different concentrations of BCP (a), DHA (b), or the BCP52%-DHA48% mixture (c). Data are mean ± SD of three experiments run in six replicates. *P < 0.05 versus control.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4109702&req=5

fig5: Viability of fibroblasts (NIH3T3) and astrocytes (U373-MG) after 24 hours of contact with different concentrations of BCP (a), DHA (b), or the BCP52%-DHA48% mixture (c). Data are mean ± SD of three experiments run in six replicates. *P < 0.05 versus control.
Mentions: The graphs of cell vitality of NIH3T3 fibroblasts and U373 astrocytes in contact with the different concentrations of BCP, BCP+DHA, and DHA are given below. At the higher concentrations, BCP showed significant toxic effects, as evident from the lower vitality level in those preparations (Figure 5(a)). The effect was greater on the fibroblasts than on the astrocytes. For the astrocytes, it is interesting that BCP stimulated cell proliferation at a concentration lower than 1.0 × 10−6 M and that this activity increased with decreasing concentrations. All toxic effects disappeared in the BCP+DHA mixture (Figure 5(c)). DHA did not have a toxic effect on either the fibroblasts or the astrocytes at any of the concentrations (Figure 5(b)). Hence, the disappearance of the toxic effect of BCP can be attributed to the simultaneous presence in solution of DHA, although the presence of DHA also seemed to decrease the BCP stimulation of astrocyte proliferation (this occurred starting from a BCP concentration of 1.0 × 10−6 M, as shown in Figure 5(c)).

Bottom Line: BCP changed fibroblast and astrocyte survival in a dose-dependent manner and the effect was counteracted by DHA coadministration.In the in vivo tests, pain responses were significantly decreased in the BCP and BCP+DHA groups with respect to OIL after 1 and 2 weeks of treatment.In conclusion, BCP alone or at lower concentration in combination with DHA was efficacious in modulating pain, showing a clear analgesic activity.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro, 53100 Siena, Italy.

ABSTRACT
Beta-caryophyllene (BCP) and docosahexaenoic acid (DHA) are components of several plants with documented anti-inflammatory and analgesic effects in animal pain models. In the present study, in vitro and in vivo tests were carried out to evaluate their effects, alone or in combination, during long-lasting administration in a model of persistent pain. IR spectra of the two compounds were obtained to determine their chemical stability and then in vitro toxicity was evaluated in fibroblasts and astrocytes. In the in vivo tests, the analgesic effects of BCP and BCP+DHA were determined in male rats subjected to a model of persistent recurrent pain (three repetitions of the formalin test once a week) to mimic recurrent pain. Both substances were administered per os in almond oil for 2 weeks. Gonadal hormones were determined at the end of the tests to evaluate treatment-induced effects on their levels. BCP changed fibroblast and astrocyte survival in a dose-dependent manner and the effect was counteracted by DHA coadministration. In the in vivo tests, pain responses were significantly decreased in the BCP and BCP+DHA groups with respect to OIL after 1 and 2 weeks of treatment. Estradiol and testosterone levels were increased only in the BCP group. In conclusion, BCP alone or at lower concentration in combination with DHA was efficacious in modulating pain, showing a clear analgesic activity.

No MeSH data available.


Related in: MedlinePlus