Limits...
In vitro and in vivo characterization of the new analgesic combination Beta-caryophyllene and docosahexaenoic Acid.

Fiorenzani P, Lamponi S, Magnani A, Ceccarelli I, Aloisi AM - Evid Based Complement Alternat Med (2014)

Bottom Line: BCP changed fibroblast and astrocyte survival in a dose-dependent manner and the effect was counteracted by DHA coadministration.In the in vivo tests, pain responses were significantly decreased in the BCP and BCP+DHA groups with respect to OIL after 1 and 2 weeks of treatment.In conclusion, BCP alone or at lower concentration in combination with DHA was efficacious in modulating pain, showing a clear analgesic activity.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro, 53100 Siena, Italy.

ABSTRACT
Beta-caryophyllene (BCP) and docosahexaenoic acid (DHA) are components of several plants with documented anti-inflammatory and analgesic effects in animal pain models. In the present study, in vitro and in vivo tests were carried out to evaluate their effects, alone or in combination, during long-lasting administration in a model of persistent pain. IR spectra of the two compounds were obtained to determine their chemical stability and then in vitro toxicity was evaluated in fibroblasts and astrocytes. In the in vivo tests, the analgesic effects of BCP and BCP+DHA were determined in male rats subjected to a model of persistent recurrent pain (three repetitions of the formalin test once a week) to mimic recurrent pain. Both substances were administered per os in almond oil for 2 weeks. Gonadal hormones were determined at the end of the tests to evaluate treatment-induced effects on their levels. BCP changed fibroblast and astrocyte survival in a dose-dependent manner and the effect was counteracted by DHA coadministration. In the in vivo tests, pain responses were significantly decreased in the BCP and BCP+DHA groups with respect to OIL after 1 and 2 weeks of treatment. Estradiol and testosterone levels were increased only in the BCP group. In conclusion, BCP alone or at lower concentration in combination with DHA was efficacious in modulating pain, showing a clear analgesic activity.

No MeSH data available.


Related in: MedlinePlus

IR spectra of (from top to bottom) pure BCP, pure DHA, mixture BCP70%-DHA30%, BCP52%-DHA48%, and mathematical sum of the IR spectra of the two pure components (BCP and DHA).
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4109702&req=5

fig4: IR spectra of (from top to bottom) pure BCP, pure DHA, mixture BCP70%-DHA30%, BCP52%-DHA48%, and mathematical sum of the IR spectra of the two pure components (BCP and DHA).

Mentions: As shown in Figure 4, the IR spectra of the two mixtures (BCP52%-DHA48% and BCP70%-DHA30%) were exactly superimposable on the spectrum obtained from the mathematical sum of the IR spectra of the two pure components (BCD spectrum + DHA spectrum in a ratio of 1 : 1). The infrared spectroscopy data allowed us to rule out the formation of a BCP-DHA complex with its own chemical identity. Hence, the structure and consequently the biological activity of the two single compounds in the mixture were preserved, since they were not compromised by any strong interaction involving the functional groups of the two molecules.


In vitro and in vivo characterization of the new analgesic combination Beta-caryophyllene and docosahexaenoic Acid.

Fiorenzani P, Lamponi S, Magnani A, Ceccarelli I, Aloisi AM - Evid Based Complement Alternat Med (2014)

IR spectra of (from top to bottom) pure BCP, pure DHA, mixture BCP70%-DHA30%, BCP52%-DHA48%, and mathematical sum of the IR spectra of the two pure components (BCP and DHA).
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4109702&req=5

fig4: IR spectra of (from top to bottom) pure BCP, pure DHA, mixture BCP70%-DHA30%, BCP52%-DHA48%, and mathematical sum of the IR spectra of the two pure components (BCP and DHA).
Mentions: As shown in Figure 4, the IR spectra of the two mixtures (BCP52%-DHA48% and BCP70%-DHA30%) were exactly superimposable on the spectrum obtained from the mathematical sum of the IR spectra of the two pure components (BCD spectrum + DHA spectrum in a ratio of 1 : 1). The infrared spectroscopy data allowed us to rule out the formation of a BCP-DHA complex with its own chemical identity. Hence, the structure and consequently the biological activity of the two single compounds in the mixture were preserved, since they were not compromised by any strong interaction involving the functional groups of the two molecules.

Bottom Line: BCP changed fibroblast and astrocyte survival in a dose-dependent manner and the effect was counteracted by DHA coadministration.In the in vivo tests, pain responses were significantly decreased in the BCP and BCP+DHA groups with respect to OIL after 1 and 2 weeks of treatment.In conclusion, BCP alone or at lower concentration in combination with DHA was efficacious in modulating pain, showing a clear analgesic activity.

View Article: PubMed Central - PubMed

Affiliation: Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro, 53100 Siena, Italy.

ABSTRACT
Beta-caryophyllene (BCP) and docosahexaenoic acid (DHA) are components of several plants with documented anti-inflammatory and analgesic effects in animal pain models. In the present study, in vitro and in vivo tests were carried out to evaluate their effects, alone or in combination, during long-lasting administration in a model of persistent pain. IR spectra of the two compounds were obtained to determine their chemical stability and then in vitro toxicity was evaluated in fibroblasts and astrocytes. In the in vivo tests, the analgesic effects of BCP and BCP+DHA were determined in male rats subjected to a model of persistent recurrent pain (three repetitions of the formalin test once a week) to mimic recurrent pain. Both substances were administered per os in almond oil for 2 weeks. Gonadal hormones were determined at the end of the tests to evaluate treatment-induced effects on their levels. BCP changed fibroblast and astrocyte survival in a dose-dependent manner and the effect was counteracted by DHA coadministration. In the in vivo tests, pain responses were significantly decreased in the BCP and BCP+DHA groups with respect to OIL after 1 and 2 weeks of treatment. Estradiol and testosterone levels were increased only in the BCP group. In conclusion, BCP alone or at lower concentration in combination with DHA was efficacious in modulating pain, showing a clear analgesic activity.

No MeSH data available.


Related in: MedlinePlus