Limits...
Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold.

Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M - Biomed Res Int (2014)

Bottom Line: The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells.Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios.All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications.

View Article: PubMed Central - PubMed

Affiliation: Biomedical Sciences Programme, School of Diagnostic and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia ; Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Darul Ehsan, Malaysia.

ABSTRACT
A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.

Show MeSH

Related in: MedlinePlus

MTT calorimetric assay. asignificantly higher than scaffolds 1, 2, 4, and 5 and control at P < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109673&req=5

fig7: MTT calorimetric assay. asignificantly higher than scaffolds 1, 2, 4, and 5 and control at P < 0.05.

Mentions: The MTT colorimetric assay is often used as a first-line test for biocompatibility with a dual purpose of quantifying the cytotoxic effect of the scaffold materials towards the cells as well as an indicator for the proliferation rate of the cells [30]. The ability of the cells to proliferate and grow in the scaffold extracts acts as a direct indicator of the absences of cytotoxic effect from the products leaching out from the scaffold materials. Results from the study (Figure 7) showed an increasing trend in cell proliferation rate with the increase in the content of nano cockle shell powder in the scaffold's composition, correlating with the increase in calcium concentration leaching out from the scaffolds. The leaching of calcium ions from the scaffolds directly enhances the cell's proliferation rate due to the fact that calcium ions are known biomolecules that are essential in determining early cell behavior [30]. However, the proliferation rate of cells cultured in the extracts of scaffold 4 with the highest content of nano cockle shell powder showed a drop in the number of viable cells compared to scaffolds 1, 2, and 3. This phenomenon is likely due to the changes of pH values of the culture medium with the extracts of scaffold 4 containing higher content of calcium rendering a highly basic condition for cell growth. The extracts of scaffold 3, however, proved to be significantly favorable in facilitating higher cell proliferation rate.


Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold.

Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M - Biomed Res Int (2014)

MTT calorimetric assay. asignificantly higher than scaffolds 1, 2, 4, and 5 and control at P < 0.05.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109673&req=5

fig7: MTT calorimetric assay. asignificantly higher than scaffolds 1, 2, 4, and 5 and control at P < 0.05.
Mentions: The MTT colorimetric assay is often used as a first-line test for biocompatibility with a dual purpose of quantifying the cytotoxic effect of the scaffold materials towards the cells as well as an indicator for the proliferation rate of the cells [30]. The ability of the cells to proliferate and grow in the scaffold extracts acts as a direct indicator of the absences of cytotoxic effect from the products leaching out from the scaffold materials. Results from the study (Figure 7) showed an increasing trend in cell proliferation rate with the increase in the content of nano cockle shell powder in the scaffold's composition, correlating with the increase in calcium concentration leaching out from the scaffolds. The leaching of calcium ions from the scaffolds directly enhances the cell's proliferation rate due to the fact that calcium ions are known biomolecules that are essential in determining early cell behavior [30]. However, the proliferation rate of cells cultured in the extracts of scaffold 4 with the highest content of nano cockle shell powder showed a drop in the number of viable cells compared to scaffolds 1, 2, and 3. This phenomenon is likely due to the changes of pH values of the culture medium with the extracts of scaffold 4 containing higher content of calcium rendering a highly basic condition for cell growth. The extracts of scaffold 3, however, proved to be significantly favorable in facilitating higher cell proliferation rate.

Bottom Line: The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells.Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios.All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications.

View Article: PubMed Central - PubMed

Affiliation: Biomedical Sciences Programme, School of Diagnostic and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia ; Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Darul Ehsan, Malaysia.

ABSTRACT
A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.

Show MeSH
Related in: MedlinePlus