Limits...
Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold.

Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M - Biomed Res Int (2014)

Bottom Line: The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells.Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios.All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications.

View Article: PubMed Central - PubMed

Affiliation: Biomedical Sciences Programme, School of Diagnostic and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia ; Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Darul Ehsan, Malaysia.

ABSTRACT
A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.

Show MeSH

Related in: MedlinePlus

XRD spectrum of scaffolds.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109673&req=5

fig6: XRD spectrum of scaffolds.

Mentions: The XRD analysis performed reveals important information about the mineral phase of the materials present in the scaffolds. The information obtained from the spectrums (Figure 6) confirmed the presence of the characteristic peaks of aragonite. The peaks observed over the range of 26.3 to 26.9, 33.4 to 33.6, and 46.4, 46.3, and 46.8 of scaffolds 2, 3, and 4, respectively, correspond to the characteristic peaks of the aragonite form of calcium carbonate (Joint Committee of Powder Diffraction Society (JCPDS) file number 00-001-0628 (figure not shown)). These peaks were not present in the spectrum of scaffold 5, which showed a single dominant peak of calcium cross-linked sodium alginate occurring at 43.9. Given the higher content of alginate in scaffolds 1 and 2, this dominant peak was also observed to occur at 44.0 in its spectrum but the intensity was not obvious in the spectrum of scaffolds 3 and 4, which showed additional dominant peaks of calcium carbonate at 48.9 and 53.0. Apparently, all scaffolds containing nano cockle shell powder appeared to be presented in the aragonite form of calcium carbonate, which was displayed as the only mineral phase to be present with no impurities or additional material produced during the development process.


Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold.

Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M - Biomed Res Int (2014)

XRD spectrum of scaffolds.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109673&req=5

fig6: XRD spectrum of scaffolds.
Mentions: The XRD analysis performed reveals important information about the mineral phase of the materials present in the scaffolds. The information obtained from the spectrums (Figure 6) confirmed the presence of the characteristic peaks of aragonite. The peaks observed over the range of 26.3 to 26.9, 33.4 to 33.6, and 46.4, 46.3, and 46.8 of scaffolds 2, 3, and 4, respectively, correspond to the characteristic peaks of the aragonite form of calcium carbonate (Joint Committee of Powder Diffraction Society (JCPDS) file number 00-001-0628 (figure not shown)). These peaks were not present in the spectrum of scaffold 5, which showed a single dominant peak of calcium cross-linked sodium alginate occurring at 43.9. Given the higher content of alginate in scaffolds 1 and 2, this dominant peak was also observed to occur at 44.0 in its spectrum but the intensity was not obvious in the spectrum of scaffolds 3 and 4, which showed additional dominant peaks of calcium carbonate at 48.9 and 53.0. Apparently, all scaffolds containing nano cockle shell powder appeared to be presented in the aragonite form of calcium carbonate, which was displayed as the only mineral phase to be present with no impurities or additional material produced during the development process.

Bottom Line: The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells.Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios.All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications.

View Article: PubMed Central - PubMed

Affiliation: Biomedical Sciences Programme, School of Diagnostic and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia ; Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Darul Ehsan, Malaysia.

ABSTRACT
A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.

Show MeSH
Related in: MedlinePlus