Limits...
Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold.

Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M - Biomed Res Int (2014)

Bottom Line: The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells.Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios.All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications.

View Article: PubMed Central - PubMed

Affiliation: Biomedical Sciences Programme, School of Diagnostic and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia ; Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Darul Ehsan, Malaysia.

ABSTRACT
A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.

Show MeSH

Related in: MedlinePlus

SEM images showing the morphology of Alg-nCP pore structures (a: ×55) and nano cockle shell deposition on the polymer matrix (b: ×1000) of scaffolds 1 to 5.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109673&req=5

fig2: SEM images showing the morphology of Alg-nCP pore structures (a: ×55) and nano cockle shell deposition on the polymer matrix (b: ×1000) of scaffolds 1 to 5.

Mentions: The results from SEM revealed the micro architecture of the scaffolds in terms of their pore sizes, diameters, interconnectivity, and arrangements within the scaffolds. The developed scaffolds regardless of their composition showed adequate pore sizes ranging from 50 to 336 μm (Table 1). An ideal bone scaffold that is favorable for facilitating new bone regeneration should possess a porous structure with pore sizes ranging from 100 to 300 μm [22]. This ideal pore range occurred predominantly in scaffolds 1, 2, and 3 as compared to scaffold 4 that showed visible differences in pore morphology. The high concentration of nano cockle powder in scaffold 4, however, resulted in the collapse of the alginate network structure. The typical egg box model with well-organized pore structures was not observed with the use of this composition. The presence of calcium ions contributed by the cockle powder is an important factor that forms the cross-linking of alginate molecules in order to produce the spherical porous structured network as compared to the lamellar sheet like arrangement of a pure alginate (scaffold 5). Figure 2 shows the morphological appearance of the pore structures of the scaffolds and the nano cockle shell depositions on the alginate matrices.


Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold.

Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M - Biomed Res Int (2014)

SEM images showing the morphology of Alg-nCP pore structures (a: ×55) and nano cockle shell deposition on the polymer matrix (b: ×1000) of scaffolds 1 to 5.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109673&req=5

fig2: SEM images showing the morphology of Alg-nCP pore structures (a: ×55) and nano cockle shell deposition on the polymer matrix (b: ×1000) of scaffolds 1 to 5.
Mentions: The results from SEM revealed the micro architecture of the scaffolds in terms of their pore sizes, diameters, interconnectivity, and arrangements within the scaffolds. The developed scaffolds regardless of their composition showed adequate pore sizes ranging from 50 to 336 μm (Table 1). An ideal bone scaffold that is favorable for facilitating new bone regeneration should possess a porous structure with pore sizes ranging from 100 to 300 μm [22]. This ideal pore range occurred predominantly in scaffolds 1, 2, and 3 as compared to scaffold 4 that showed visible differences in pore morphology. The high concentration of nano cockle powder in scaffold 4, however, resulted in the collapse of the alginate network structure. The typical egg box model with well-organized pore structures was not observed with the use of this composition. The presence of calcium ions contributed by the cockle powder is an important factor that forms the cross-linking of alginate molecules in order to produce the spherical porous structured network as compared to the lamellar sheet like arrangement of a pure alginate (scaffold 5). Figure 2 shows the morphological appearance of the pore structures of the scaffolds and the nano cockle shell depositions on the alginate matrices.

Bottom Line: The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells.Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios.All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications.

View Article: PubMed Central - PubMed

Affiliation: Biomedical Sciences Programme, School of Diagnostic and Applied Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia ; Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), 43400 Serdang, Selangor Darul Ehsan, Malaysia.

ABSTRACT
A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.

Show MeSH
Related in: MedlinePlus