Limits...
Effect of catalytic cylinders on autothermal reforming of methane for hydrogen production in a microchamber reactor.

Yan Y, Guo H, Zhang L, Zhu J, Yang Z, Tang Q, Ji X - ScientificWorldJournal (2014)

Bottom Line: A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout.The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected.The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China ; College of Power Engineering, Chongqing University, Chongqing 400030, China.

ABSTRACT
A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

Show MeSH

Related in: MedlinePlus

Mass fraction of (a) hydrogen and (b) methane along sectional position with aligned (■) and staggered (▲) layout of cylinder: reaction time tr = 25 s.
© Copyright Policy - open-access
Related In: Results  -  Collection


getmorefigures.php?uid=PMC4109667&req=5

fig9: Mass fraction of (a) hydrogen and (b) methane along sectional position with aligned (■) and staggered (▲) layout of cylinder: reaction time tr = 25 s.

Mentions: Mass fraction of hydrogen and methane along sectional position with aligned and staggered layout at reaction time of 25 s is illustrated in Figures 9(a) and 9(b). It indicates a small benefit of staggered layout, since the mass fraction of hydrogen is generally higher in staggered arrangement before 6 mm. As a contrast, the mass fraction of methane is higher in aligned arrangement and after that no significant differences are observed. Methane partial oxidation reaction, an exothermic process, dominates the reaction initially and the staggered arrangement enhances heat transfer and the turbulence intensity.


Effect of catalytic cylinders on autothermal reforming of methane for hydrogen production in a microchamber reactor.

Yan Y, Guo H, Zhang L, Zhu J, Yang Z, Tang Q, Ji X - ScientificWorldJournal (2014)

Mass fraction of (a) hydrogen and (b) methane along sectional position with aligned (■) and staggered (▲) layout of cylinder: reaction time tr = 25 s.
© Copyright Policy - open-access
Related In: Results  -  Collection

Show All Figures
getmorefigures.php?uid=PMC4109667&req=5

fig9: Mass fraction of (a) hydrogen and (b) methane along sectional position with aligned (■) and staggered (▲) layout of cylinder: reaction time tr = 25 s.
Mentions: Mass fraction of hydrogen and methane along sectional position with aligned and staggered layout at reaction time of 25 s is illustrated in Figures 9(a) and 9(b). It indicates a small benefit of staggered layout, since the mass fraction of hydrogen is generally higher in staggered arrangement before 6 mm. As a contrast, the mass fraction of methane is higher in aligned arrangement and after that no significant differences are observed. Methane partial oxidation reaction, an exothermic process, dominates the reaction initially and the staggered arrangement enhances heat transfer and the turbulence intensity.

Bottom Line: A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout.The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected.The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

View Article: PubMed Central - PubMed

Affiliation: Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China ; College of Power Engineering, Chongqing University, Chongqing 400030, China.

ABSTRACT
A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

Show MeSH
Related in: MedlinePlus