Limits...
Stereotactic body radiotherapy for small lung tumors in the University of Tokyo Hospital.

Yamashita H, Takahashi W, Haga A, Kida S, Saotome N, Nakagawa K - Biomed Res Int (2014)

Bottom Line: Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described.The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown.In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.

ABSTRACT
Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described. The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown. In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.

Show MeSH

Related in: MedlinePlus

Agility multileaf collimator (http://www.elekta.co.jp/products/agility.html).
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109604&req=5

fig10: Agility multileaf collimator (http://www.elekta.co.jp/products/agility.html).

Mentions: We use the latest Elekta MLC, Agility (Elekta AB, Stockholm, Sweden), for MLC tracking during VMAT. The Agility MLC has 160 leaves, with projected 5 mm leaf width at the isocenter, arranged in two banks of 80 leaves (Figure 10). Each bank of leaves is contained within a dynamic leaf guide (DLG), which can move with the MLC leaves. The maximum velocity of the individual MLC leaves is 35 mm/s, and for the dynamic leaf guide, 30 mm/s. Therefore the maximum possible velocity, if both the dynamic leaf guide and the MLC leaves are moving in the same direction, is 65 mm/s. There are two jaws that move perpendicular to the direction of MLC leaf travel, and these have a maximum velocity of 90 mm/s. These increased leaf and jaw velocities compared with previous Elekta MLC models, such as the MLCi with a maximum leaf speed of 20 mm/s, could confer an advantage for dynamic MLC tracking during VMAT delivery [66].


Stereotactic body radiotherapy for small lung tumors in the University of Tokyo Hospital.

Yamashita H, Takahashi W, Haga A, Kida S, Saotome N, Nakagawa K - Biomed Res Int (2014)

Agility multileaf collimator (http://www.elekta.co.jp/products/agility.html).
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109604&req=5

fig10: Agility multileaf collimator (http://www.elekta.co.jp/products/agility.html).
Mentions: We use the latest Elekta MLC, Agility (Elekta AB, Stockholm, Sweden), for MLC tracking during VMAT. The Agility MLC has 160 leaves, with projected 5 mm leaf width at the isocenter, arranged in two banks of 80 leaves (Figure 10). Each bank of leaves is contained within a dynamic leaf guide (DLG), which can move with the MLC leaves. The maximum velocity of the individual MLC leaves is 35 mm/s, and for the dynamic leaf guide, 30 mm/s. Therefore the maximum possible velocity, if both the dynamic leaf guide and the MLC leaves are moving in the same direction, is 65 mm/s. There are two jaws that move perpendicular to the direction of MLC leaf travel, and these have a maximum velocity of 90 mm/s. These increased leaf and jaw velocities compared with previous Elekta MLC models, such as the MLCi with a maximum leaf speed of 20 mm/s, could confer an advantage for dynamic MLC tracking during VMAT delivery [66].

Bottom Line: Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described.The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown.In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.

ABSTRACT
Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described. The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown. In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.

Show MeSH
Related in: MedlinePlus