Limits...
Stereotactic body radiotherapy for small lung tumors in the University of Tokyo Hospital.

Yamashita H, Takahashi W, Haga A, Kida S, Saotome N, Nakagawa K - Biomed Res Int (2014)

Bottom Line: Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described.The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown.In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.

ABSTRACT
Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described. The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown. In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.

Show MeSH

Related in: MedlinePlus

Dose distributions in each phase at the first fraction for 2 patients (coronal view). The yellow contour in each image indicates the gross tumor volume.
© Copyright Policy
Related In: Results  -  Collection

License
getmorefigures.php?uid=PMC4109604&req=5

fig8: Dose distributions in each phase at the first fraction for 2 patients (coronal view). The yellow contour in each image indicates the gross tumor volume.

Mentions: We developed a verification method for moving targets using 4D dose calculation based on the information acquired during treatment [65] (Figure 8). The beam shape, direction, and intensity were constructed from the LINAC log data, which was in excellent agreement with the EPID measurement for the MLC location. In the process of 4D dose calculation, sorting log data into breathing phase subsets was included. With corresponding log data, the dose calculation was performed on each phase of in-treatment 4D CBCT by means of the ROI mapping method. These 4D dose distributions demonstrated the delivered 4D dose distribution including interplay effect. The predicted dose value of the center of the target in a moving phantom agreed well with the measured dose (Figure 9).


Stereotactic body radiotherapy for small lung tumors in the University of Tokyo Hospital.

Yamashita H, Takahashi W, Haga A, Kida S, Saotome N, Nakagawa K - Biomed Res Int (2014)

Dose distributions in each phase at the first fraction for 2 patients (coronal view). The yellow contour in each image indicates the gross tumor volume.
© Copyright Policy
Related In: Results  -  Collection

License
Show All Figures
getmorefigures.php?uid=PMC4109604&req=5

fig8: Dose distributions in each phase at the first fraction for 2 patients (coronal view). The yellow contour in each image indicates the gross tumor volume.
Mentions: We developed a verification method for moving targets using 4D dose calculation based on the information acquired during treatment [65] (Figure 8). The beam shape, direction, and intensity were constructed from the LINAC log data, which was in excellent agreement with the EPID measurement for the MLC location. In the process of 4D dose calculation, sorting log data into breathing phase subsets was included. With corresponding log data, the dose calculation was performed on each phase of in-treatment 4D CBCT by means of the ROI mapping method. These 4D dose distributions demonstrated the delivered 4D dose distribution including interplay effect. The predicted dose value of the center of the target in a moving phantom agreed well with the measured dose (Figure 9).

Bottom Line: Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described.The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown.In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.

View Article: PubMed Central - PubMed

Affiliation: Department of Radiology, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.

ABSTRACT
Our work on stereotactic body radiation therapy (SBRT) for primary and metastatic lung tumors will be described. The eligibility criteria for SBRT, our previous SBRT method, the definition of target volume, heterogeneity correction, the position adjustment using four-dimensional cone-beam computed tomography (4D CBCT) immediately before SBRT, volumetric modulated arc therapy (VMAT) method for SBRT, verifying of tumor position within internal target volume (ITV) using in-treatment 4D-CBCT during VMAT-SBRT, shortening of treatment time using flattening-filter-free (FFF) techniques, delivery of 4D dose calculation for lung-VMAT patients using in-treatment CBCT and LINAC log data with agility multileaf collimator, and SBRT method for centrally located lung tumors in our institution will be shown. In our institution, these efforts have been made with the goal of raising the local control rate and decreasing adverse effects after SBRT.

Show MeSH
Related in: MedlinePlus